基于部分信息分解(PID)的解耦分析

Seiya Tokui, Issei Sato,
The University of Tokyo
ICLR 2022

摘要

作者提出了对一种解耦能力度量的框架,从唯一性冗余性协同性的角度来理解解耦
在变分自编码器上做了相关实验。

引言

解耦是一种学习表征的指导准则,可以分离出各个单独变化的因素,以此控制非结构化表征,例如图像、文本、音频。
解耦概念新颖但很多问题有待解决。
目前的解耦指标可能无法检测到涉及两个以上变量的耦合。导致忽略传递一个生成因子信息的多个变量z = (z1, z2)。

贡献:

  1. 基于PID的解耦分析框架。提出了一个解耦的分析框架,用PID捕捉多个变量之间的相互作用。通过这个框架,可以区分两种不同类型的耦合,即冗余和协同,从而深入了解一个表征如何耦合生成因子。
  2. 部分信息项的可实现的界限。推导出部分信息项的下界和上界。利用唯一信息的下限,制定了一个解耦度量,称为UNIBOUND。设计了耦合攻击,将耦合注入给定的解耦表示,并通过实验证实UNIBOUND有效地捕获了多变量的耦合。
  3. 对学到的表征进行详细分析。分析了由变分自动编码器(VAEs)获得的表征。观察到,UNIBOUND有时与其他指标不一致,这表明多变量的相互作用可能主导着所学的表征。还观察到,在用不同方法学习的模型中出现了不同类型的耦合。这一观察提供了一个启示,即可能需要不同的方法来消除它们,以实现解耦的表征学习。

相关工作

由于生成因素作为下游学习任务的基础是有用的,从数据中获得分解的表征是表征学习的一个热门话题。Higgins等人(2017)建立了一个标准的评估程序,在该程序的基础上提出了多种指标。其中,Higgins等人(2017)和Kim Mnih(2018)提出了基于生成因子条件下每个潜变量的偏差的度量。相比之下,相互信息差距(MIG)(Chen等人,2018)及其变体(Do Tran,2020;Zaidi等人,2020)是基于潜变量和生成因子之间的相互信息。作者扩展了后者的方向,考虑多变量的相互作用。

Barlow(1989)通过比较群体和个体变量的熵,即总的相关度(TC)来讨论冗余度。不过,将冗余作为一个信息量来衡量就不那么简单了。PID框架(Williams & Beer, 2010)提供了一种方法来理解多个随机变量之间的冗余,作为相互信息的一个组成部分。

部分信息分解的解耦

部分信息分解(PID——Partial information decomposition)

从信息理论的角度解决了相对于真实生成因子 y k y_k yk的潜在表示 z z z的解耦问题。考虑评估一个生成因子 y k y_k yk是如何被潜在表示 z

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值