PID神经元网络解耦控制算法(matlab实现)

本文介绍了PID神经元网络的结构和控制算法,包括输入层、隐含层和输出层的功能以及控制律计算。通过MATLAB代码展示了如何实现对一个3输入3输出复杂耦合系统的控制,利用梯度修正法动态调整权值以接近控制目标。案例分析显示PID神经元控制器能有效控制多输入多输出系统。

​本博客的完整代码获取:https://www.mathworks.com/academia/books/book106283.html​

1案例背景

1.1PID 神经元网络结构

        PID神经元网络从结构上可以分为输人层、隐含层和输出层三层,n个控制量的PID神经元网络包含n个并列的相同子网络,各子网络间既相互独立,又通过网络连接权值相互联系。每个子网络的输入层有两个神经元,分别接收控制量的目标值和当前值。每个子网络的隐含层由比例元,积分元和微分元构成,分别对应着PID控制器中的比例控制,积分控制和微分控制。PID神经元网络按被控系统控制量的个数可以分为控制单变量系统的单控制量神经元网络和控制多变量系统的多控制量神经元网络。其中单控制量神经元网络是PID神经元网络的基本形式,多控制量神经元网络可以看成是多个单控制量神经元网络的组合形式。单控制量神经元网络的拓扑结构如图6-1所示。

525b886056c64c19bc70923a680477a2.png

96dae7d057324cc0bf44b49eef7bbfb8.png1.2控制律计算

        PID神经元网络分为输入层、隐含层和输出层,网络输入量为控制量当前值和控制目标,输出量为控制律,各层输人输出计算公式如下。
        1)输入层

6b27d87b28de4ba7ad3a4fbbc39dcd50.pnge6a64f3116004d12a3ff2d51c421b931.pngc7e48c4c06d04e0bae173ba0444175a1.pngc35aed0cf6e042d09d595a7cca75d3e0.png1.3权值修正

        PID神经元网络在控制的过程中根据控制量误差按照梯度修正法修正权值,使得控制量不断接近控制目标值,权值修正的过程如下。
fb3f5490f5304c509375a5cffded10e4.png1.4 控制对象

        PID神经元网络的控制对象是一个3输入3输出的复杂耦合系统,系统的传递函数如下:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

配电网和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值