基于SSD的人脸检测项目实践----(1)人脸业务场景介绍(常见问题、标注方法、算法性能好坏、人脸采集常用方法)(笔记)

本文介绍了基于SSD的人脸检测项目,涵盖了人脸业务场景的常见问题,如姿态、表情变化、光照遮挡影响,以及人脸标注方法,包括矩形和椭圆标注。此外,讨论了算法性能的衡量标准——检测率和误报率,并列举了如FDDB、LFW等数据集。最后,探讨了人脸采集的挑战,如非法行为防范和活体检测的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸业务场景介绍(常见问题、标注方法、算法性能好坏、人脸采集常用方法)

判断是否存在人脸,如果存在人脸则定位到人脸的位置
标准的目标检测问题(针对人脸目标)

  • 姿态和表情的变化
  • 不同人的外观差异
  • 光照,遮挡的影响
  • 不同视角
  • 不同大小、位置
    在这里插入图片描述
    人脸标注方法—矩形标注
  • 传统方法都是用一个矩形框将画面中的人脸区域包含在内
  • 这种标记方法很难给出一个恰好包含面部的矩形框
    在这里插入图片描述
    人脸标注方法—椭圆标注
  • 人脸天然呈现为椭圆形,采用椭圆形来表征一种较为准确的方法
  • 可以对侧脸与转动后的面部进行描述
  • 椭圆长轴半径
  • 椭圆短轴半径
  • 椭圆长轴偏转角度
  • 椭圆圆心x坐标
  • 椭圆圆心y坐标
    在这里插入图片描述
    判断算法性能好坏
  • 检测率、误报率
  • 每一个标记只允许有一个检测与之相对应
  • 重复检测会被视为错误检测
  • ROC
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值