用特殊切割方法解决部分重积分问题

特殊切割方法就是用某条特殊的直线去切割平面图形,或者是某个特殊的平面去切割立体图形。比如:

( x − 2 ) 2 + y 2 = 1 (x-2)^2+y^2=1 (x2)2+y2=1绕y轴旋转一周所得到的旋转体的体积。

这道题可以用底面半径从1到3的圆柱面去切割,得到无数个内部是空心的圆筒,然后对x从1到3积分得出答案

也可以用普通的切片法,水平切割得到无数个小圆环片,对z轴从-1到1积分。

还可以这样做:
用无数个圆面纵向去切割下面的图形,得到无数个近似为小圆柱体的立体,这些圆柱的底面积是圆的面积: π π π,题目中圆心为(2,0),圆心的轨迹:
C : { x 2 + y 2 = 4 z = 0 C:\left\{ \begin{aligned} x ^2+y^2& = & 4 \\ z & = & 0 \end{aligned} \right. C:{x2+y2z==40
以圆心轨迹的微元作为小圆柱体的高,对轨迹积分即对曲线积分,得
∮ \oint C π π π dS = 4 π 2 4π^2 4π2.
在这里插入图片描述
2.


D = D= D={ (x,y) | x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y21 },则
∬ \iint D 25 − ( 3 x + 4 y ) 2 d x d y = _ _ _ _ _ . \sqrt{25-(3x+4y)^2}dxdy=\_\_\_\_\_. 25(3x+4y)2 dxdy=_____.

-这道题可以用二重积分换元法做(令u=3x+4y),这里跳过

令u= 3 x 5 3x\over5 53x+ 4 y 5 4y\over5 54y,视u为常数,因为原点到直线u= 3 x 5 3x\over5 53x+ 4 y 5 4y\over5 54y 的距离恰好就是|u|,所以可以这样对积分区域进行切割:
在这里插入图片描述
把直线u= 3 x 5 3x\over5 53x+ 4 y 5 4y\over5 54y 看成新的坐标轴,并对它进行积分,其中面积元素 d x d y = 2 1 − u 2 d u dxdy=2\sqrt{1-u^2}du dxdy=21u2 du(切割的小矩形的面积),故:
积分 I = ∫ − 1 1 25 − 25 u 2 ⋅ 2 1 − u 2 = 40 3 I=\int{_{-1}^1}\sqrt{25-25u^2}\cdot2\sqrt{1-u^2}={40\over3} I=112525u2 21u2 =340

计算 ∭ Ω d x d y d z ( 1 + x + y + z ) 2 \iiint{_Ω}{{dxdydz}\over(1+x+y+z)^2} Ω(1+x+y+z)2dxdydz,其中Ω由三个坐标面与平面x+y+z=1围成。

类似2.的做法 ,令u= x + y + z 3 {x+y+z}\over\sqrt{3} 3 x+y+z,记平面P: x + y + z = 3 u x+y+z=\sqrt3u x+y+z=3 u,然后用这个平面去切Ω,因为原点到平面的距离恰好为|u|,所以以直线 x = y = z x=y=z x=y=z作为新的轴,体积元素为: 3 4 {\sqrt3}\over4 43 ( 6 u ) 2 d u (\sqrt6u)^2du (6 u)2du(等边三角形面积)对u从0到 1 3 1\over{\sqrt3} 3 1积分:
于是有 ∭ Ω d x d y d z ( 1 + x + y + z ) 2 = ∫ 0 1 3 \iiint{_Ω}{{dxdydz}\over(1+x+y+z)^2}=\int{_0^{1\over{\sqrt3}}} Ω(1+x+y+z)2dxdydz=03 1 1 ( 1 + 3 u ) 2 1\over{(1+\sqrt3u)^2} (1+3 u)21 3 4 {\sqrt3}\over4 43 ( 6 u ) 2 d u (\sqrt6u)^2du (6 u)2du,令 3 u = t \sqrt3u=t 3 u=t可得最后结果为 1 2 1\over2 21 ( 3 2 − 2 l n 2 ) . ({3\over2}-2ln2). (232ln2).
在这里插入图片描述4.
56第4题地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值