(矩阵Part1)基础知识

(矩阵Part1)基础知识

零.基础知识

0.1n维向量空间

我 们 把 R n = { ( x 1 , . . . , x n ) ∣ x j ∈ R , j = 1 , 2 , . . . . n } 我们把R^n=\{ (x_1,...,x_n)|x_j∈R,j=1,2,....n \} Rn={(x1,...,xn)xjR,j=1,2,....n}

中 的 每 一 个 数 组 ( x 1 , . . . , x n ) 称 为 R n 中 的 一 个 点 ( 又 称 为 n 维 向 量 ) , 并 且 称 R n 为 n 维 向 量 空 间 中的每一个数组(x_1,...,x_n)称为R^n中的一个点\\(又称为n维向量),并且称R^n为n维向量空间 (x1,...,xn)RnnRnn

0.2数域

​ 设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。常见数域: 复数域C;实数域R;有理数域Q。

0.3线性空间(又称为向量空间)

	向量空间亦称线性空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个数域。若:
	1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。
	2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。
	3.加法与纯量乘法满足以下条件:
		1) α+β=β+α,对任意α,β∈V.
		2) α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.
		3) 存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.
		4) 对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.
		5) 对P中单位元1,有1α=α(α∈V).
		6) 对任意k,l∈P,α∈V有(kl)α=k(lα).
		7) 对任意k,l∈P,α∈V有(k+l)α=kα+lα.
		8) 对任意k∈P,α,β∈V有k(α+β)=kα+kβ,
	则称V为域P上的一个线性空间,或向量空间。V中元素称为向量,V的零元称为零向量,P称为线性空间的基域.当P是实数域时,V称为实线性空间.当P是复数域时,V称为复线性空间。

0.4定义范数

​ 范数的本质是一个算子,他完成了向量空间与实属的映射.范数,是具有“长度”概念的函数。范数是一个函数,是向量空间内的所有矢量赋予非零的正长度大小

定义半范数(半范数可以为非零的向量赋予零长度。)

在这里插入图片描述

定义范数

在这里插入图片描述

0.5常见范数

在这里插入图片描述

0.6内积与欧氏空间

设 x ⃗ = { x 1 , . . . , x n } , y ⃗ = { y 1 , . . . , y n } ∈ R n , 则 x ⃗ 与 y ⃗ 的 内 积 定 义 为 x ⃗ y ⃗ = ∑ i = 1 n x i y i ∈ R 设\vec{ x }=\{x_1,...,x_n \},\vec{ y }=\{y_1,...,y_n \}∈R^n,则\vec{ x }与\vec{ y }的内积定义为\\\vec{ x }\vec{ y }=\sum_{i=1}^nx_iy_i∈R\\ x ={x1,...,xn},y ={y1,...,yn}Rn,x y x y =i=1nxiyiR

按照如此定义n维向量空间的内积,则向量内积满足如下性质:

在这里插入图片描述


R n 中 的 元 素 称 为 n 维 向 量 ; 设 向 量 α = ( a 1 , a 2 , . . . , a n ) , 称 α i 为 α 的 第 i 个 分 量 。 R^n中的元素称为n维向量;设向量α=(a_1,a_2,...,a_n),称α_i为α的第i个分量。 Rnnα=(a1,a2,...,an)αiαi

则 定 义 了 这 样 内 积 运 算 的 n 维 向 量 所 构 成 的 R n 空 间 , 称 为 欧 几 里 得 空 间 或 者 欧 氏 空 间 。 定 义 向 量 x ⃗ ∈ R n 的 模 维 : ∣ ∣ x ⃗ ∣ ∣ = x ⃗ x ⃗ = ∑ i = 1 n x i 2 则定义了这样内积运算的n维向量所构成的R^n空间,称为欧几里得空间或者欧氏空间。\\定义向量\vec{ x }∈R^n的模维:||\vec{ x }||=\sqrt{ \vec{ x }\vec{ x } }=\sum_{i=1}^nx_i^2 nRnx Rnx =x x =i=1nxi2

定义了欧氏空间中的模后,定义欧氏空间中任意两点间的距离:
定 义 了 欧 氏 空 间 中 的 模 后 , 定 义 欧 氏 空 间 中 任 意 两 点 间 的 欧 式 距 离 ( 又 称 距 离 ) : ∣ x ⃗ − y ⃗ ∣ = ∣ ∣ x ⃗ − y ⃗ ∣ ∣ = ∑ i = 1 n ( x i − y i ) 2 定义了欧氏空间中的模后,定义欧氏空间中任意两点间的欧式距离(又称距离):\\|\vec{ x }-\vec{y}|=||\vec{ x }-\vec{y}||=\sqrt{\sum_{i=1}^n(x_i-y_i)^2} ()x y =x y =i=1n(xiyi)2
在这里插入图片描述

0.7定义向量的内积(点积)和外积(叉积)

在这里插入图片描述

内积的本质是向量投影。

在这里插入图片描述

在这里插入图片描述

一.矩阵与行列式基本知识

1.1矩阵定义

​ 由s·m个数排成s行、m列的一张表,被称为一个s×m的矩阵。定义第i行、第j列交叉位置上的元素称为矩阵的(i,j)元。一个s×m的矩阵可以有如下几种写法:
A s × m = A ( i ; j ) = ( a i j ) s × m A_{s×m}=A_{(i;j)}=(a_{ij})_{s×m} As×m=A(i;j)=(aij)s×m

1.2矩阵的基本运算

1.2.1矩阵的加法

在这里插入图片描述

1.2.2矩阵的数乘

在这里插入图片描述

1.2.3矩阵的初等行变换
我们称如下针对矩阵的操作为矩阵的初行等变换:
    1.把一行的倍数加在另一行上;
    2.互换两行的位置;
    3.用一个非零数乘以某一行

1.3行列式

1.3.1定义行列式

​ 行列式本质上是个算子,它是方阵数值的映射。

1.3.2定义常见的行列式

在这里插入图片描述

在这里插入图片描述

1.3.3子式、余子式与代数余子式

​ n阶行列式|A|中任意取k行k列(1≤k≤n),位于这些行和列交叉处的k*k个元素按照原来的排法构成的k阶行列式称为|A|的一个k阶子式。


如 果 取 定 第 i 1 , i 2 , . . . , i k 行 ( i 1 < i 2 < . . . < i k ) , 取 定 j 1 , j 2 , . . . , j k 列 ( j 1 < j 2 < . . . < j k ) 则 所 得 的 k 阶 子 式 为 A ( i 1 i 2 . . . i k j 1 j 2 . . . j k ) 划 去 子 式 所 在 的 第 i 1 , i 2 , . . . , i k 行 , j 1 , j 2 , . . . , j k 列 , 剩 下 的 元 素 按 照 原 来 的 排 法 组 成 的 ( n − k ) 阶 行 列 式 称 为 上 述 子 式 的 余 子 式 。 如果取定第i_1,i_2,...,i_k行(i_1<i_2<...<i_k),取定j_1,j_2,...,j_k列(j_1<j_2<...<j_k)\\则所得的k阶子式为A\begin{pmatrix}i_1&i_2&...&i_k\\j_1&j_2&...&j_k\\\end{pmatrix}\\划去子式所在的第i_1,i_2,...,i_k行,j_1,j_2,...,j_k列,剩下的元素按照原来的排法组成的(n-k)阶行列式\\称为上述子式的余子式。 i1,i2,...,ik(i1<i2<...<ik)j1,j2,...,jk(j1<j2<...<jk)kA(i1j1i2j2......ikjk)i1,i2,...,ikj1,j2,...,jk(nk)
​ n阶行列式中,划去第i行第j列,剩下的元素按照原来的次序组成一个n-1阶的行列式称为(i,j)元的余子式,记作:
M i j M_{ij} Mij
​ 如果令:
A i j = ( − 1 ) i + j M i j 则 称 A i j 是 ( i , j ) 元 的 代 数 余 子 式 。 A_{ij}=(-1)^{i+j}M_{ij} \\ 则称A_{ij}是(i,j)元的代数余子式。 Aij=(1)i+jMijAij(i,j)

1.3.4行列式的Laplace Expansion定义

​ n阶行列式|A|,等于它的第i行元素与其对应的代数余子式的乘积之和,常记作det(A),即
d e t ( A ) = ∣ A ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n = ∑ j = 1 n a i j A i j det(A)=|A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}= \sum_{j=1}^na_{ij}A_{ij} det(A)=A=ai1Ai1+ai2Ai2+...+ainAin=j=1naijAij

1.3.5站在外积的角度探索行列式的本质

在这里插入图片描述

由定义可知:
A ⃗ = ( a , b ) , B ⃗ = ( c , d ) 则 A ⃗ × B ⃗ = ∣ A ⃗ ∣ ∣ B ⃗ ∣ ∗ s i n θ 可 见 刚 好 是 上 图 r 1 ∗ r 2 ∗ s i n θ = r 1 ∗ h , 即 其 本 质 维 平 行 四 边 形 面 积 。 以 此 类 推 , 三 阶 行 列 式 即 以 上 阶 数 , 代 表 的 是 n 维 向 量 所 张 成 空 间 的 体 机 。 \vec{A}=(a,b),\vec{B}=(c,d)则\vec{A}×\vec{B}=|\vec{A}||\vec{B}|*sinθ\\ 可见刚好是上图r_1*r_2*sinθ=r_1*h,即其本质维平行四边形面积。\\ 以此类推,三阶行列式即以上阶数,代表的是n维向量所张成空间的体机。 A =(a,b),B =(c,d)A ×B =A B sinθr1r2sinθ=r1hn
在这里插入图片描述

1.4行列式的性质以及几何证明

下面给出行列式的性质:
1.行列式行列互换,行列式值不变;(也做:矩阵A转置的行列式等于A的行列式)
2.行列式一行的公因子可以提出去;
3.行列式中若某一行是两个数组的和,那么此行列式等于两个行列式的和,这两个行列式的这一行分别是第一个数组和第二个数组,其余行和原来的行列式的各行相同;
4.两行互换,行列式反号;
5.两行相同,行列式值为0;
6.把行列式某一行的倍数加在另一行上,行列式值不变;
7.n阶行列式|A|的第i行元素与第k行(k≠i)相应元素的代数余子式的乘积之和为0。
8.上述性质将“行”换成“列”后仍然适用。

给出参考:【线性代数的几何意义】行列式的几何意义 - AndyJee - 博客园 (cnblogs.com)

给出参考:矩阵的转置的意义是什么? - 知乎 (zhihu.com)

1.5特殊的行列式

给出参考:几种特殊类型行列式及其计算 - 哔哩哔哩 (bilibili.com)

二.线性方程组

2.1n元线性方程组及相关基本定义

​ 含有n个未知量的线性方程组称为n元线性方程组,他的一般形式为:

在这里插入图片描述

其 中 , a 11 , a 12 , . . . , a s n 式 系 数 b 1 , b 2 , . . . , b s 式 常 数 , 常 数 项 一 般 写 在 等 号 右 边 其中,a_{11},a_{12},...,a_{sn}式系数 \\ b_1,b_2,...,b_s式常数,常数项一般写在等号右边 ,a11,a12,...,asnb1,b2,...,bs

2.1.1解与解集


对 于 线 性 方 程 组 , 如 果 x 1 , x 2 , . . , x n 分 别 用 数 c 1 , c 2 , . . . , c n 带 入 后 , 每 个 方 程 组 都 变 成 恒 等 式 , 则 称 n 元 有 序 实 数 组 ( c 1 , c 2 , . . . , c n ) 式 原 线 性 方 程 组 的 一 个 解 , 方 程 组 所 有 的 解 称 为 方 程 组 的 解 集 。 对于线性方程组,如果x_1,x_2,..,x_n分别用数c_1,c_2,...,c_n带入后,每个方程组都变成恒等式,则称\\ n元有序实数组(c_1,c_2,...,c_n)式原线性方程组的一个解,方程组所有的解称为方程组的解集。 线x1,x2,..,xnc1,c2,...,cnn(c1,c2,...,cn)线

2.1.2线性方程组的求解过程

给出参考:(18条消息) n元线性方程组解的情况及判别准则_hflag168的博客-CSDN博客

2.1.3增广矩阵、系数矩阵、阶梯型矩阵与简化阶梯型矩阵

​ 在求解过程中引入如下四种概念:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2线性方程组解的

2.2.1线性方程组解的情况
线性方程组解的情况主要分成如下两种:
1.无解
2.有解
	2.1有唯一解
	2.2有无穷多解

在这里插入图片描述

2.2.2定义线性方程组的主变量和自由未知量

​ 针对2.1.3节所述的线性方程组,最后化简为一个简化阶梯型矩阵表示的线性方程组是:
{ x 1 − x 2 = 2 x 3 = − 1 显 然 这 个 方 程 组 有 无 穷 多 个 解 , 这 无 穷 多 个 解 可 以 用 下 列 表 达 式 表 示 { x 1 = x 2 + 2 x 3 = − 1 这 个 表 达 式 被 称 为 原 线 性 方 程 组 的 一 般 解 , 其 中 以 主 元 为 系 数 的 未 知 量 x 1 , x 3 被 称 为 主 变 量 , x 2 被 称 为 自 由 未 知 量 \left\{\begin{matrix} x_1-x_2=2 \\ x_3=-1 \end{matrix}\right.\\显然这个方程组有无穷多个解,这无穷多个解可以用下列表达式表示\\\left\{\begin{matrix} x_1=x_2+2 \\ x_3=-1 \end{matrix}\right.\\这个表达式被称为原线性方程组的一般解,\\其中以主元为系数的未知量x_1,x_3被称为主变量,x_2被称为自由未知量 {x1x2=2x3=1{x1=x2+2x3=1线x1,x3x2

2.3n元齐次线性方程组

如 果 n 元 线 性 方 程 组 中 的 每 一 个 方 程 的 常 数 项 都 是 0 , 则 称 这 样 的 方 程 组 为 n 元 齐 次 线 性 方 程 组 : { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = 0 . . . . . . . . . . . . . . a s 1 x 1 + a s 2 x 2 + . . . + a s n x n = 0 显 然 ( 0 , 0 , . . . , 0 ) 是 齐 次 线 性 方 程 组 的 一 个 解 , 称 为 零 解 , 任 何 一 个 齐 次 线 性 方 程 组 都 有 零 解 , 如 果 一 个 齐 次 线 性 方 程 组 除 了 零 解 之 外 还 有 其 他 解 , 则 称 其 他 解 为 非 零 解 。 如果n元线性方程组中的每一个方程的常数项都是0,则称这样的方程组为n元齐次线性方程组:\\\left\{\begin{matrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=0 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=0 \\ ... ... ... ... .. \\ a_{s1}x_1+a_{s2}x_2+...+a_{sn}x_n=0 \\\end{matrix}\right.\\显然(0,0,...,0)是齐次线性方程组的一个解,称为零解,任何一个齐次线性方程组都有零解,\\如果一个齐次线性方程组除了零解之外还有其他解,则称其他解为非零解。 n线0n线:a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0..............as1x1+as2x2+...+asnxn=0(0,0,...,0)线线线

它有如下性质:

1.如果一个齐次线性方程组有非零解,那么他一定有无穷多解;
2.n元齐次线性方程组有非零解的充要条件是:他的系数矩阵经过初等行变换成的阶梯形矩阵中,非零行的个数r<n;
3.n元齐次线性方程组如果方程的个数s<n,那么它一定有非零解。

在这里插入图片描述

2.4从线性表出的角度审视线性方程组

在这里插入图片描述

则:

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . . . . . . . . . a s 1 x 1 + a s 2 x 2 + . . . + a s n x n = b s 上 述 方 程 组 有 解 , 等 价 于 β 可 以 由 α 1 ⃗ 、 . . . 、 α n ⃗ 线 性 表 出 其 中 α 1 ⃗ ( α 11 . . . α s 1 ) . . . α n ⃗ ( α 1 n . . . α s n ) 、 β ⃗ ( b 1 . . . b s ) β ⃗ = x 1 ∗ α 1 ⃗ + . . . . + x n ∗ α n ⃗ \left\{\begin{matrix} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2 \\ ... ... ... ... .. \\ a_{s1}x_1+a_{s2}x_2+...+a_{sn}x_n=b_s \\\end{matrix}\right.\\上述方程组有解,等价于β可以由\vec{α_1}、...、\vec{α_n}线性表出\\其中\vec{α_1}\begin{pmatrix}α_{11}\\.\\.\\.\\α_{s1}\\\end{pmatrix}...\vec{α_n}\begin{pmatrix}α_{1n}\\.\\.\\.\\α_{sn}\\\end{pmatrix}、\vec{β}\begin{pmatrix}b_1\\.\\.\\.\\b_s\\\end{pmatrix}\\\vec{β}=x_1*\vec{α_1}+....+x_n*\vec{α_n} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2..............as1x1+as2x2+...+asnxn=bsβα1 ...αn 线α1 α11...αs1...αn α1n...αsnβ b1...bsβ =x1α1 +....+xnαn

3.由线性方程组引出线性相关与线性无关

3.1线性相关与线性无关定义

在这里插入图片描述

3.2线性关系->齐次线性方程组->行列式

​ 结合第2.4节内容,从齐次线性方程组的角度看

在这里插入图片描述

所以判断向量组是否线性相关,可以直接判断其齐次线性方程组是否有非零解。

再结合2.4节内容,即齐次线性方程组解的判断条件可知:
( 1 ) 上 述 向 量 组 α 1 , α 2 , . . . , α s 线 性 相 关 等 价 于 n 个 n 维 列 向 量 组 成 的 矩 阵 的 行 列 式 等 于 0. ( 2 ) 上 述 向 量 组 α 1 , α 2 , . . . , α s 线 性 无 关 等 价 于 n 个 n 维 列 向 量 组 成 的 矩 阵 的 行 列 式 非 0. (1)上述向量组α_1,α_2,...,α_s线性相关等价于n个n维列向量组成的矩阵的行列式等于0.\\(2)上述向量组α_1,α_2,...,α_s线性无关等价于n个n维列向量组成的矩阵的行列式非0.\\ 1α1,α2,...,αs线nn0.2α1,α2,...,αs线nn0.

3.3向量组等价

在这里插入图片描述

3.4极大线性无关组

在这里插入图片描述

3.5基本性质

1.仍然需要注意,矩阵本质上就是向量组!!
2.如果一个向量组的一个部分组线性相关,则整个向量组也线性相关。如果向量组线性无关,则他的任何一个部分组也线性无关。
3.如果一个向量组线性无关,则他的延伸组也线性无关。如果一个向量组线性相关,则他的缩短组也线性相关。
4.向量组与他的极大线性无关组等价。
5.向量组的任意两个极大线性无关组等价。
6.若向量组β1,β2,...,βr可以由向量组α1,α2,...αn线性表出。如果r>s,则向量组β1,β2,...,βr线性相关。
7.若向量组β1,β2,...,βr可以由向量组α1,α2,...αn线性表出。如果向量组β1,β2,...,βr线性无关,则r≤s.
8.等价的相信线性无关向量组所含的向量个数相同。
9.向量组的任意两个极大线性无关组所含向量个数相等。

4.线性无关与矩阵的秩

在进行后面说明之前,仍然指出矩阵本质上就是向量组!!

4.1向量组的秩

在这里插入图片描述

​ 若向量组A可以由向量组B线性表出,则rank(A)≤rank(B),显然等价向量组具有相同的秩。

4.2矩阵的秩

在这里插入图片描述

4.3矩阵秩的相关性质

1.矩阵的初等行变换不改变矩阵的行秩
2.矩阵的初等行变换不改变矩阵向量组的线性相关性,从而不改变矩阵的列秩
	说明: 设α1,α2,…,αn是n个m维列向量,则它们的线性相关性等价于线性方程组AX=0(其中A=(α1,α2,…,αn),X=(x1,x2,…,xn)T)是否有非零解,即α1,α2,…,αn线性相关等价于AX=0有非零解,α1,α2,…,αn线性无关等价于AX=0只有零解。而对A进行三种行初等变换分别相当于对线性方程组中的方程进行:两个方程交换位置,对一个方程乘一个非零常数,将一个方程的常数倍对应加到另一个方程上。显然进行三种变换后所得方程组与原方程组同解,若设所得方程组为BX=0,则B即为对A进行行初等变换后所得矩阵。B的列向量的线性相关性与BX=0是否有解等价,也就是与AX=0是否有解等价,即与A的列向量的线性相关性等价!
3.任意矩阵的行秩等于列秩。
	https://www.zhihu.com/question/25524378
4.矩阵A经过初等行变换转化为阶梯型矩阵J,则A的秩等于J的非零行的个数。设J的主元所在的列是第j1,j2,...,jr列,则A的第j1,j2,...,jr列构成A的列向量组的一个极大线性无关组。
5.矩阵的初等行变换和初等列变换都不改变矩阵的秩。
6.任意非零矩阵的秩等于它的非零子式的最高结束。
7.一个n级矩阵A的秩等于n,当且仅当|A|不等于0.如果一个仿真的秩等于它的级数,那么这个方帧维满秩矩阵。

4.4秩与线性方程组解的关系

在这里插入图片描述

5.线性方程组解集结构

5.1齐次线性方程组的解集结构

5.5.1定义线性子空间

在这里插入图片描述

5.5.2定义解向量与解集

数 域 K 上 的 n 元 齐 次 线 性 方 程 组 x 1 a 1 ⃗ + x 2 a 2 ⃗ + . . . + x n a n ⃗ = 0 的 解 是 一 个 K 上 的 n 元 有 序 数 组 , 换 句 话 来 说 , 他 是 K n 上 的 一 个 向 量 , 故 称 为 方 程 组 的 一 个 解 向 量 , 所 有 解 向 量 构 成 的 集 合 称 为 解 集 。 数域K上的n元齐次线性方程组\\ x_1\vec{a_1}+x_2\vec{a_2}+...+x_n\vec{a_n}=0\\ 的解是一个K上的n元有序数组,换句话来说,他是K^n上的一个向量,\\ 故称为方程组的一个解向量,所有解向量构成的集合称为解集。 Kn线x1a1 +x2a2 +...+xnan =0KnKn

​ 从5.5.1描述可知,W是K^n上的一个子空间。

5.5.3定义基础解系与通解

在这里插入图片描述

5.5.4性质


数 域 K 上 的 n 元 齐 次 线 性 方 程 组 x 1 a 1 ⃗ + x 2 a 2 ⃗ + . . . + x n a n ⃗ = 0 的 系 数 矩 阵 A 的 秩 小 于 未 知 量 个 数 n 时 , 她 一 定 有 基 础 解 系 , 并 且 他 的 每 一 个 基 础 解 系 所 含 的 解 向 量 个 数 为 n − r a n k ( A ) 数域K上的n元齐次线性方程组\\ x_1\vec{a_1}+x_2\vec{a_2}+...+x_n\vec{a_n}=0\\ 的系数矩阵A的秩小于未知量个数n时,她一定有基础解系,并且他的\\每一个基础解系所含的解向量个数为n-rank(A) Kn线x1a1 +x2a2 +...+xnan =0Annrank(A)

5.5.5例题

给出参考:快速学会齐次线性方程组的解法——基础解系,通解一并解决!_哔哩哔哩_bilibili

5.2非齐次线性方程组的解集结构

5.2.1由齐次线性方程组与非齐次线性方程组解的关系

在这里插入图片描述

在这里插入图片描述

5.2.2例题

给出参考:§4.2 非齐次线性方程组 (edu-edu.com.cn)

6.基与维数

6.1定义基与标准基

在这里插入图片描述

1.齐次线性方程组的一个基础解系就是解空间的一个基。
2.定义正交基

给出参考:正交基 - 简书 (jianshu.com)

3.定义标准正交基

给出参考:标准正交基_百度百科 (baidu.com)

4.任意两个基所含的向量个数相等,基的本质就是极大线性无关组。

6.2定义维数

U 是 K n 的 一 个 非 零 子 空 间 , U 的 一 个 基 所 含 向 量 的 个 数 为 U 的 维 数 , 记 作 d i m U 。 规 定 零 子 空 间 的 维 数 为 0 。 显 然 d i m K n = n U是K^n的一个非零子空间,U的一个基所含向量的个数为U的维数,记作dimU。\\规定零子空间的维数为0。显然dimK^n=n UKnUUdimU0dimKn=n

在这里插入图片描述

6.3坐标

在这里插入图片描述

6.4向量组的生成子空间

设 a 1 ⃗ , a 2 ⃗ , . . . , a s ⃗ 是 K n 的 一 个 向 量 组 , 令 U = { k 1 a 1 ⃗ + k 2 a 2 ⃗ + . . . + k s a s ⃗ ∣ k 1 , k 2 , . . . , k s ∈ K } 显 然 U 是 K n 的 一 个 子 空 间 , 我 们 把 U 称 为 a 1 ⃗ , a 2 ⃗ , . . . , a s ⃗ 的 生 成 子 空 间 记 作 < a 1 ⃗ , a 2 ⃗ , . . . , a s ⃗ > 设\vec{a_1},\vec{a_2},...,\vec{a_s}是K^n的一个向量组,令\\U=\{k_1\vec{a_1}+k_2\vec{a_2}+...+k_s\vec{a_s}|k_1,k_2,...,k_s∈K\}\\显然U是K^n的一个子空间,我们把U称为\vec{a_1},\vec{a_2},...,\vec{a_s}的生成子空间\\记作<\vec{a_1},\vec{a_2},...,\vec{a_s}> a1 a2 ...as KnU={k1a1 +k2a2 +...+ksas k1,k2,...,ksK}UKnUa1 a2 ...as <a1 a2 ...as >

1.向量组的秩等于其解空间的维数。
2.矩阵的行空间维数等于列空间维数。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值