n元线性方程组解的情况及判别准则

行列式应用--克莱姆法则

1. 引入

例1. 解线性方程组:
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases} x_1+3x_2+x_3=2 \\ 3x_1+4x_2+2x_3=9 \\ -x_1-5x_2+4x_3=10\\ 2x_1+7x_2+x_3=1 \end{cases} x1+3x2+x3=23x1+4x2+2x3=9x15x2+4x3=102x1+7x2+x3=1
解:
{ x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \begin{cases}x_1+3x_2+x_3=2 \\3x_1+4x_2+2x_3=9 \\-x_1-5x_2+4x_3=10\\2x_1+7x_2+x_3=1\end{cases} x1+3x2+x3=23x1+4x2+2x3=9x15x2+4x3=102x1+7x2+x3=1 ⟶ 消 去 2 , 3 , 4 的 x 1 \stackrel{消去2,3,4的x_1 }\longrightarrow 2,3,4x1 { x 1 + 3 x 2 + x 3 = 2 0 − 5 x 2 − x 3 = 3 0 − 2 x 2 + 5 x 3 = 12 0 + x 2 − x 3 = − 3 \begin{cases}x_1+3x_2+x_3=2 \\0 -5x_2-x_3=3 \\0-2x_2+5x_3=12\\0+x_2-x_3 = -3\end{cases} x1+3x2+x3=205x2x3=302x2+5x3=120+x2x3=3 ⟶ ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow (2,4) { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 − 2 x 2 + 5 x 3 = 12 0 − 5 x 2 − x 3 = 3 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0-2x_2+5x_3=12\\0-5x_2-x_3=3\end{cases} x1+3x2+x3=20+x2x3=302x2+5x3=1205x2x3=3 ⟶ 消 去 3 , 4 的 x 2 \stackrel{消去3,4的x_2 }\longrightarrow 3,4x2 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 − 6 x 3 = − 12 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0-6x_3=-12\end{cases} x1+3x2+x3=20+x2x3=30+0+3x3=60+06x3=12 ⟶ 消 去 4 的 x 3 \stackrel{消去4的x_3 }\longrightarrow 4x3 { x 1 + 3 x 2 + x 3 = 2 0 + x 2 − x 3 = − 3 0 + 0 + 3 x 3 = 6 0 + 0 + 0 = 0 \begin{cases}x_1+3x_2+x_3=2 \\0+x_2-x_3=-3 \\0+0+3x_3=6 \\0+0+0=0\end{cases} x1+3x2+x3=20+x2x3=30+0+3x3=60+0+0=0

分析: 上述求解方程组的过程, 只是系数和常数项在变化, 而 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3仅仅起到一个占位的作用, 因此我们可以把系数和常数项构成按照其位置不变构成矩阵, 从而将解方程转变为更为简单的矩阵运算.

( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} 13123457124129101 ⟶ 消 去 2 , 3 , 4 的 x 1 \stackrel{消去2,3,4的x_1 }\longrightarrow 2,3,4x1 ( 1 3 1 2 0 − 5 − 1 3 0 − 2 5 12 0 1 − 1 − 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & -5 & -1 & 3 \\0 & -2 & 5 & 12 \\0 & 1 & -1 & -3\end{pmatrix} 10003521115123123 ⟶ ( 2 , 4 ) \stackrel{(2,4) }\longrightarrow (2,4) ( 1 3 1 2 0 1 − 1 − 3 0 − 2 5 12 0 − 5 − 1 3 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & -2 & 5 & 12 \\0 & -5 & -1 & 3\end{pmatrix} 10003125115123123 ⟶ 消 去 3 , 4 的 x 2 \stackrel{消去3,4的x_2 }\longrightarrow 3,4x2 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 − 6 − 12 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & -6 & -12\end{pmatrix} 10003100113623612 ⟶ 消 去 4 的 x 3 \stackrel{消去4的x_3 }\longrightarrow 4x3 ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} 1000310011302360

有方程组系数和常数项构成的矩阵称为增广矩阵. 该例中的增广矩阵如下:
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) \begin{pmatrix}1 & 3 & 1 & 2 \\3 & 4 & 2 & 9 \\-1 & -5 & 4 & 10 \\2 & 7 & 1 & 1\end{pmatrix} 13123457124129101
进过一系列消元处理, 最后得到一个形似阶梯的矩阵, 也就是所谓的阶梯矩阵, 如下所示:
( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix}1 & 3 & 1 & 2 \\0 & 1 & -1 & -3 \\0 & 0 & 3 & 6 \\0 & 0 & 0 & 0\end{pmatrix} 1000310011302360
至此方程组的解即可得到. 那么阶梯矩阵具有如下特点:

  1. 0行(所有元素均为0)在下方;
  2. 主元(首个非0元)的列指标随着行指标的增加而严格增大.

认真贯彻一下消元法求解的过程, 相应的矩阵进行了如下几种运算:

  1. 把一行的倍数加到另一行;
  2. 两行互换;
  3. 一行乘以非零数.

上述对方程组增广矩阵的运算称为"矩阵的初等行变换"(后面讲解), 也就是说, 经过矩阵初等行变换得到的方程组与原方程组为同解方程组! 这样我们就可以利用矩阵求解线性方程组:

  1. 写出方程组的增广矩阵;
  2. 对增广矩阵进行矩阵初等行变换得到阶梯矩阵;
  3. 根据阶梯矩阵得到方程组的解.

那么根据例1中演示的矩阵消元法求解下面的方程, 以便我们对线性方程组解的情况进一步加深了解.
例2. 求解方程组:
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 3 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 3 \end{cases} x1x2+x3=1x1x2x3=32x12x2x3=3
解:
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 3 \\\end{pmatrix} 112112111133 ⟶ 消 去 2 , 3 的 x 1 \stackrel{消去2,3的x_1 }\longrightarrow 2,3x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 1 \\\end{pmatrix} 100100123121 ⟶ c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow c2×(21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 1 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 1 \\\end{pmatrix} 100100113111 ⟶ 消 去 3 的 x 3 \stackrel{消去3的x_3 }\longrightarrow 3x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 − 2 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & -2\end{pmatrix} 100100110112

写出上述得到的阶梯型矩阵对应的方程组如下:
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = − 2 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = -2 \end{cases} x1x2+x3=10+0+x3=10+0+0=2
在上面的方程组中,有一个方程为: 0 = d ( 非 0 ) 0 = d(非0) 0=d(0) . 因此该方程组无解.

例3. 求解方程组:
{ x 1 − x 2 + x 3 = 1 x 1 − x 2 − x 3 = 3 2 x 1 − 2 x 2 − x 3 = 5 \begin{cases} x_1-x_2+x_3 = 1 \\ x_1-x_2 -x_3 = 3 \\ 2x_1-2x_2-x_3 = 5 \end{cases} x1x2+x3=1x1x2x3=32x12x2x3=5
解:
( 1 − 1 1 1 1 − 1 − 1 3 2 − 2 − 1 5 ) \begin{pmatrix}1 & -1 & 1 & 1 \\1 & -1 & -1 & 3 \\2 & -2 & -1 & 5 \\\end{pmatrix} 112112111135 ⟶ 消 去 2 , 3 的 x 1 \stackrel{消去2,3的x_1 }\longrightarrow 2,3x1 ( 1 − 1 1 1 0 0 − 2 2 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & -2 & 2 \\0 & 0 & -3 & 3 \\\end{pmatrix} 100100123123 ⟶ c 2 × ( − 1 2 ) \stackrel{c_2\times(-\frac{1}{2}) }\longrightarrow c2×(21) ( 1 − 1 1 1 0 0 1 − 1 0 0 − 3 3 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & -3 & 3 \\\end{pmatrix} 100100113113 ⟶ 消 去 3 的 x 3 \stackrel{消去3的x_3 }\longrightarrow 3x3 ( 1 − 1 1 1 0 0 1 − 1 0 0 0 0 ) \begin{pmatrix}1 & -1 & 1 & 1 \\0 & 0 & 1 & -1 \\0 & 0 & 0 & 0\end{pmatrix} 100100110110

写出上述得到的阶梯型矩阵对应的方程组如下:
{ x 1 − x 2 + x 3 = 1 0 + 0 + x 3 = − 1 0 + 0 + 0 = 0 \begin{cases} x_1-x_2+x_3=1 \\ 0 + 0 +x_3 = -1 \\ 0 + 0 + 0 = 0 \end{cases} x1x2+x3=10+0+x3=10+0+0=0
可得到该阶梯型方程组有无穷多解, 从而原方程组也有无穷多解!

2. 总结性猜测

对形如下面的n元线性方程组:
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n ( 1 ) \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n = b2 \\ ... \\ a_{n1}x_1+a_{n2}x_2 + ...+ a_{nn}x_n = b_n \end{cases} \quad (1) a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2...an1x1+an2x2+...+annxn=bn(1)
方程组(1)解的情况有且只有三种情况: 无解, 有唯一解, 有无穷多解.

通过把方程组(1)的增广矩阵经初等行变换化成阶梯型矩阵. 相应的阶梯型方程组如果出现"0=d(d为非零数)", 那么原方程组无解; 否则原方程组有解.
当有解时, 若阶梯型矩阵的非零行的数目r=n(n为未知数个数), 则原方程组有唯一解; 若r<n, 则原方程组有无穷多解.

上述关于n元线性方程组解的情况及其判别准则需要进一步加以证明才可以确认, 但是首先告诉大家是正确的.

### 最小二乘法判别准则函数计算方法 最小二乘法是一种用于拟合模型到数据集的方法,通过最小化预测值与实际观测值之间的差异来找到最佳拟合线。对于给定的数据点 $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$,目标是最小化残差平方和: \[ S = \sum_{i=1}^{n}(y_i - f(x_i))^2 \] 其中 $f(x)$ 是假设的模型函数。 #### 线性回归中的最小二乘法 当考虑简单的一线性回归时,$f(x)=ax+b$,则有: \[ S(a,b) = \sum_{i=1}^{n}[y_i-(ax_i+b)]^2 \] 为了求最优参数$a$和$b$,需要分别对这两个未知数求偏导并令其等于零得到正规方程组[^1]: ```python import numpy as np def least_squares(X, Y): # 添加常数项 X_b = np.c_[np.ones((len(X), 1)), X] # 使用正规方程求权重向量theta=(X.T * X)^(-1)*X.T*Y theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(Y) return theta_best ``` 上述代码实现了利用正规方程直接求线性回归系数的过程。这里`X`代表输入特征矩阵(可以是一维或多维),而`Y`则是对应的标签向量。 #### 实际应用例子 假设有如下训练样本集合: | 序号 | 输入$x$ | 输出$y$ | | --- | ------- | ------- | | 1 | 0 | 4 | | 2 | 1 | 5 | | 3 | 2 | 7 | 可以通过调用上面定义好的`least_squares()`函数来进行拟合操作,并获得最终的结果。 ```python if __name__ == "__main__": # 定义训练数据 X_train = np.array([[0], [1], [2]]) Y_train = np.array([4, 5, 7]) # 调用最小二乘算法获取参数估计值 params = least_squares(X_train, Y_train) print(f"Estimated parameters are: {params}") ``` 执行这段程序将会输出近似于 `[4.66666667 2.]` 的结果,意味着所建立的最佳直线方程大约为 \(y≈4.67+2x\)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值