高等概率论 Chapter 9. Integration with Respect to a Probability Measure1

Chapter 9. Integration with Respect to a Probability Measure1

南京审计大学统计学研究生第一学期课程,《高等概率论》。

欢迎大家来我的github下载源码呀,https://github.com/Berry-Wen/statistics-note-system

Background

Let ( Ω , A , P ) (\Omega,\mathcal{A},P) (Ω,A,P) be a probability space.
We want to define the expectation, or what is equivalent, the “integral”, of general r . v . r.v. r.v..
We have of course already done this for r . v . s r.v.s r.v.s on a countable space Ω \Omega Ω.
The general case (for arbitrary Ω \Omega Ω) is more delicate.

Definition 9.1

  1. A r . v .   X r.v. \ X r.v. X is called simple if it takes on only a finite number of values and hence can be written in the form
    X = ∑ i = 1 n a i I A i (1) X = \sum_{i=1}^{n} a_i I_{A_i} \tag{1} X=i=1naiIAi(1)
    Where a i ∈ R a_i \in \R aiR, and A i ∈ A , 1 ≤ i ≤ n A_i \in \mathcal{A},1\le i \le n AiA,1in

A k ∈ F , k = 1 , 2 , . . . , n A_k \in \mathcal{F},k=1,2,...,n AkF,k=1,2,...,n两两不交,且
∪ k = 1 n A k = Ω , a k ∈ R ^ ( 1 ) , k = 1 , 2 , . . . , n \cup_{k=1}^n A_k = \Omega,a_k \in \hat{\mathcal{R}}^{(1)},k=1,2,...,n k=1nAk=Ω,akR^(1),k=1,2,...,n
则称函数
KaTeX parse error: Undefined control sequence: \notag at position 56: …d w \in \Omega \̲n̲o̲t̲a̲g̲ ̲
( Ω , F ) (\Omega,\mathcal{F}) (Ω,F)上的简单函数

  • Such an X X X is clearly measurable; (Why?) 思考这里为什么 X X X是可测的

    ∀ B ∈ B k X − 1 ( B ) = { w : X ( w ) ∈ B } = ∪ a k ∈ B { w : X ( w ) = a k } = ∪ a k ∈ B A k ∈ F 逆象的定义 简单函数的定义 简单函数的定义 简单函数中 A k ∈ F ⇒ ∪ A k ∈ B A k ∈ F \forall B \in \mathcal{B}^k \\ \begin{array}{ll} \begin{aligned} X^{-1}(B) &= \{w: X(w) \in B\} \\ &= \cup_{a_k \in B} \{w:X(w) = a_k\} \\ &= \cup_{a_k \in B} A_k \\ &\in \mathcal{F} \end{aligned} & \begin{array}{ll} \text{逆象的定义} \\ \text{简单函数的定义} \\ \text{简单函数的定义} \\ \text{简单函数中} A_k \in \mathcal{F} \Rightarrow \cup_{A_k \in B} A_k \in \mathcal{F} \end{array} \end{array} BBkX1(B)={w:X(w)B}=akB{w:X(w)=ak}=akBAkF逆象的定义简单函数的定义简单函数的定义简单函数中AkFAkBAkF

由定理8.1可知 X X X可测。

  • Conversely, if X X X is measurable and takes on the values a 1 , . . . , a n a_1,...,a_n a1,...,an it must have the representation (1) with A i = { X = a i } A_i = \{X=a_i\} Ai={X=ai} ;

  • A simple r . v . r.v. r.v. has of course many different representation of the form (1).

  1. If X X X is simple, its expectation (or “integral” with respect to P P P) is the number
    E { X } = ∑ i = 1 n a i P ( A i ) (2) E\{X\} = \sum_{i=1}^{n} a_i P(A_i) \tag{2} E{X}=i=1naiP(Ai)(2)

    • This is also written ∫ X ( w ) P ( d w ) \int X(w) P(dw) X(w)P(dw) and even more simply ∫ X d P \int X dP XdP;
    • A little algebra shows that E { X } E\{X\} E{X} does not depend on the particular representation (1) chosen for X X X. 练习:

Exercise

Let ( Ω , A , P ) (\Omega,\mathcal{A},P) (Ω,A,P) be a probability space
Let X : Ω → R X:\Omega \to \R X:ΩR be such that it admits two representations
X = ∑ i = 1 n a i I A i and X = ∑ j = 1 m b j I B j X = \sum_{i=1}^{n} a_i I_{A_i} \quad \text{and} \quad X = \sum_{j=1}^{m} b_j I_{B_j} X=i=1naiIAiandX=j=1mbjIBj
where a i , b j ∈ R a_i,b_j \in \R ai,bjR , and A i , B j ∈ A A_i,B_j \in \mathcal{A} Ai,BjA for all i , j . i,j. i,j. Show that
∑ i = 1 n a i P ( A i ) = ∑ j = 1 m b j P ( B j ) \sum_{i=1}^{n} a_i P(A_i) = \sum_{j=1}^{m} b_j P(B_j) i=1naiP(Ai)=j=1mbjP(Bj)


First, prove that ∪ i = 1 n A i = ∪ j = 1 m B j \cup_{i=1}^{ n}A_i = \cup_{j=1}^{m}B_j i=1nAi=j=1mBj.

Assume
a i ≠ 0 A i ∩ A j = ∅ b j ≠ 0 B i ∩ B j = ∅ ( i ≠ j ) \begin{array}{lll} a_i \neq 0 & A_i \cap A_j = \empty \\ b_j \neq 0 & B_i \cap B_j = \empty \end{array} (i\neq j) ai=0bj=0AiAj=BiBj=(i=j)

∀ w ∈ ∪ i = 1 n A i ∃ i 0 ∈ { 1 , 2 , . . . , n } s . t .   X ( w ) = a i 0 ≠ 0 s o   w ∈ ∪ j = 1 m B j e l s e   X ( w ) = 0 ∴   ∪ i = 1 n A i ⊂ ∪ j = 1 m B j ∀ w ∈ ∪ j = 1 m B j ∃ j 0 ∈ { 1 , 2 , . . . , n } s . t .   X ( w ) = b j 0 ≠ 0 s o   w ∈ ∪ i = 1 n A i e l s e   X ( w ) = 0 ∴   ∪ j = 1 m B j ⊂ ∪ i = 1 n A i ⇓ ∪ j = 1 m B j = ∪ i = 1 n A i \begin{array}{lll} \hline \begin{array}{lll} \forall w \in \cup_{i=1}^{n} A_i \\ \exists i_0 \in \left\{ 1,2,...,n \right\} \\ s.t. \ X(w) = a_{i_0} \neq 0 \\ so \ w \in \cup_{j=1}^{m}B_j \\ \quad else \ X(w) = 0 \\ \therefore \ \cup_{i=1}^{n}A_i \subset \cup_{j=1}^{m}B_j \\ \end{array} & \begin{array}{lll} \forall w \in \cup_{j=1}^{m}B_j \\ \exists j_0 \in \left\{ 1,2,...,n \right\} \\ s.t. \ X(w) = b_{j_0} \neq 0 \\ so \ w \in \cup_{i=1}^{n}A_i \\ \quad else \ X(w) = 0 \\ \therefore \ \cup_{j=1}^{m}B_j \subset \cup_{i=1}^{n}A_i \end{array} \Downarrow \\ \cup_{j=1}^{m}B_j = \cup_{i=1}^{n}A_i\\ \hline \end{array} wi=1nAii0{1,2,...,n}s.t. X(w)=ai0=0so wj=1mBjelse X(w)=0 i=1nAij=1mBjj=1mBj=i=1nAiwj=1mBjj0{1,2,...,n}s.t. X(w)=bj0=0so wi=1nAielse X(w)=0 j=1mBji=1nAi

Second, if A i B j ≠ ∅ A_i B_j \neq \emptyset AiBj=, for w ∈ A i B j X ( w ) = a i = b j w \in A_i B_j \quad X(w) = a_i = b_j wAiBjX(w)=ai=bj

X = ∑ i = 1 n a i I A i = ∑ i = 1 n a i I A i ∩ ( ∪ i = 1 n A i ) = ∑ i = 1 n a i I A i ∩ ( ∪ j = 1 n B j ) = ∑ i = 1 n a i I ∪ j = 1 m A i B j = ∑ i = 1 n ∑ j = 1 m a i I A i B j X = ∑ j = 1 m b j I B j = ∑ j = 1 m b j I B j ∩ ( ∪ j = 1 m B j ) = ∑ j = 1 m b j I B j ∩ ( ∪ i = 1 n A i ) = ∑ j = 1 m b j I ∪ i = 1 n A i B j = ∑ i = 1 n ∑ j = 1 m b j I A i B j ⇓ for  w ∈ A i B j ≠ ∅ , X ( w ) = a i = b j \begin{array}{lll} \hline \begin{aligned} X &= \sum_{i=1}^{n} a_i I_{A_i} \\ &= \sum_{i=1}^{n} a_i I_{A_i \cap ( \cup_{i=1}^n A_i)} \\ &= \sum_{i=1}^{n} a_i I_{A_i \cap ( \cup_{j=1}^n B_j)} \\ &= \sum_{i=1}^{n} a_i I_{ \cup_{j=1}^m A_i B_j} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i I_{A_i B_j} \\ \end{aligned} & \begin{aligned} X &= \sum_{j=1}^{m} b_j I_{B_j} \\ &= \sum_{j=1}^{m} b_j I_{B_j \cap ( \cup_{j=1}^m B_j)} \\ &= \sum_{j=1}^{m} b_j I_{B_j \cap ( \cup_{i=1}^n A_i)} \\ &= \sum_{j=1}^{m} b_j I_{ \cup_{i=1}^n A_i B_j} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} b_j I_{A_i B_j} \\ \end{aligned}\\ \Downarrow \\ \text{for } w \in A_iB_j\neq \emptyset, X(w) = a_i = b_j \\ \hline \end{array} X=i=1naiIAi=i=1naiIAi(i=1nAi)=i=1naiIAi(j=1nBj)=i=1naiIj=1mAiBj=i=1nj=1maiIAiBjfor wAiBj=,X(w)=ai=bjX=j=1mbjIBj=j=1mbjIBj(j=1mBj)=j=1mbjIBj(i=1nAi)=j=1mbjIi=1nAiBj=i=1nj=1mbjIAiBj

如果 A i B j = ∅ A_iB_j = \empty AiBj= , a i P ( A i B j ) = b j P ( A i B j ) = 0 a_iP(A_iB_j)=b_jP(A_iB_j)=0 aiP(AiBj)=bjP(AiBj)=0,不影响计算

Last,Prove E X = E Y EX=EY EX=EY

E X = ∑ i = 1 n a i P ( A i ) = ∑ i = 1 n a i P ( A i ∩ ( ∪ i = 1 n A i ) ) = ∑ i = 1 n a i P ( A i ∩ ( ∪ j = 1 m B j ) ) = ∑ i = 1 n a i P ( ∪ j = 1 m A i B j ) = ∑ i = 1 n ∑ j = 1 m a i P ( A i B j ) E Y = ∑ j = 1 m b j P ( B j ) = ∑ j = 1 m b j P ( B j ∩ ( ∪ j = 1 m B j ) ) = ∑ j = 1 m b j P ( B j ∩ ( ∪ i = 1 n A i ) ) = ∑ j = 1 m b j P ( ∪ i = 1 n A i B j )   pairwise disjoint = ∑ i = 1 n ∑ j = 1 m b j P ( A i B j ) ⇓ ∵ a i = b j E X = E Y \begin{array}{lll} \hline \begin{aligned} EX &= \sum_{i=1}^{n} a_i P(A_i) \\ &= \sum_{i=1}^{n} a_i P(A_i \cap (\cup_{i=1}^{n}A_i)) \\ &= \sum_{i=1}^{n} a_i P(A_i \cap ( \cup_{j=1}^{m} B_j)) \\ &= \sum_{i=1}^{n} a_i P( \cup_{j=1}^{m}A_i B_j) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} a_i P(A_i B_j) \\ \end{aligned} & \begin{aligned} EY &= \sum_{j=1}^{m} b_j P(B_j) \\ &= \sum_{j=1}^{m} b_j P(B_j \cap (\cup_{j=1}^m B_j)) \\ &= \sum_{j=1}^{m} b_j P(B_j \cap ( \cup_{i=1}^{n}A_i)) \\ &= \sum_{j=1}^{m} b_j P( \cup_{i=1}^{n}A_i B_j) \ \text{ pairwise disjoint}\\ &= \sum_{i=1}^{n} \sum_{j=1}^{m} b_j P(A_i B_j) \\ \end{aligned} \\ \Downarrow \because a_i = b_j \\ EX=EY \\ \hline \end{array} EX=i=1naiP(Ai)=i=1naiP(Ai(i=1nAi))=i=1naiP(Ai(j=1mBj))=i=1naiP(j=1mAiBj)=i=1nj=1maiP(AiBj)ai=bjEX=EYEY=j=1mbjP(Bj)=j=1mbjP(Bj(j=1mBj))=j=1mbjP(Bj(i=1nAi))=j=1mbjP(i=1nAiBj)  pairwise disjoint=i=1nj=1mbjP(AiBj)





Remark 测度与概率—2.3节 期望与积分 - 知乎 (zhihu.com)

  • Let X , Y X,Y X,Y be two simple r . v . s r.v.s r.v.s and β \beta β a real number. We clearly have

    X = ∑ i = 1 n a i I A i Y = ∑ j = 1 m b j I B j X = \sum_{i=1}^n a_i I_{A_i} \quad Y = \sum_{j=1}^m b_j I_{B_j} X=i=1naiIAiY=j=1mbjIBj
    E X = ∑ i = 1 n a i P ( A i ) E Y = ∑ j = 1 m b j P ( B j ) EX = \sum_{i=1}^n a_i P(A_i) \quad EY = \sum_{j=1}^m b_j P(B_j) EX=i=1naiP(Ai)EY=j=1mbjP(Bj)

    • E { β X } = β E { X } E\{\beta X\} = \beta E\{X\} E{βX}=βE{X};

      E { β X } = ∑ i = 1 n β a i P ( A i ) = β ∑ i = 1 n a i P ( A i ) = β E { X } E\{\beta X\}=\sum_{i=1}^n \beta a_i P(A_i)=\beta \sum_{i=1}^n a_i P(A_i)=\beta E\{X\} E{βX}=i=1nβaiP(Ai)=βi=1naiP(Ai)=βE{X}

    • E { X + Y } = E { X } + E { Y } E\{X+Y\}=E\{X\}+E\{Y\} E{X+Y}=E{X}+E{Y};

      E { X + Y } = ∑ i = 1 n ∑ j = 1 m ( a i + b j ) P ( A i B j ) = ∑ i = 1 n ∑ j = 1 m a i P ( A i B j ) + ∑ i = 1 n ∑ j = 1 m b j P ( A i B j ) = ∑ i = 1 n a i P ( A i ) + ∑ j = 1 m b j P ( B j ) = E { X } + E { Y } \begin{aligned} E\{X+Y\} &= \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) P(A_i B_j) \\ &= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i B_j) + \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i B_j) \\ &= \sum_{i=1}^n a_i P(A_i) + \sum_{j=1}^m b_j P(B_j) \\ &= E\{X\} +E\{Y\} \end{aligned} E{X+Y}=i=1nj=1m(ai+bj)P(AiBj)=i=1nj=1maiP(AiBj)+i=1nj=1mbjP(AiBj)=i=1naiP(Ai)+j=1mbjP(Bj)=E{X}+E{Y}

    • If X ≤ Y X\le Y XY,then E { X } ≤ E { Y } E\{X\}\le E\{Y\} E{X}E{Y}.

      X ≤ Y ⇒ a i ≤ b j X\le Y \Rightarrow a_i \le b_j XYaibj
      E { X } = ∑ i = 1 n a i P ( A i ) = ∑ i = 1 n ∑ j = 1 m a i P ( A i B j ) ≤ ∑ i = 1 n ∑ j = 1 m b j P ( A i B j ) = ∑ j = 1 m b j P ( B j ) = E { Y } \begin{aligned} E\{X\} = \sum_{i=1}^n a_i P(A_i) &= \sum_{i=1}^n \sum_{j=1}^m a_i P(A_i B_j) \\ &\le \sum_{i=1}^n \sum_{j=1}^m b_j P(A_i B_j) \\ &= \sum_{j=1}^m b_j P( B_j) \\ &= E\{Y\} \end{aligned} E{X}=i=1naiP(Ai)=i=1nj=1maiP(AiBj)i=1nj=1mbjP(AiBj)=j=1mbjP(Bj)=E{Y}

  • Thus, expectation is linear on the vector space of all simple r . v . s r.v.s r.v.s.

    因此,对于向量空间中的简单随机变量,期望是线性的。

  • Next, we define expectation for positive r . v . s r.v.s r.v.s.
    定义正的随机变量

    For X X X positive,

    • By this, we assume that X X X may take all values in [ 0 , ∞ ] [0,\infty] [0,], including + ∞ +\infty +;
      在这种假设下,随机变量 X X X的取值为 [ 0 , ∞ ] [0,\infty] [0,]

    • This innocuous extension is necessary for the coherence of some of our further results.
      这种无害的扩展对于我们某些进一步结果的一致性是必需的。

      Let
      E { X } = sup ⁡ { E { Y } : Y  a simple r.v. with  0 ≤ Y ≤ X } (3) E\{X\} = \sup \{E\{Y\}: Y \text{ a simple r.v. with } 0\le Y \le X\} \tag{3} E{X}=sup{E{Y}:Y a simple r.v. with 0YX}(3)

    • This supremum always exists in [ 0 , ∞ ] [0,\infty] [0,].
      这个上确界在 [ 0 , ∞ ] [0,\infty] [0,] 上总是存在的

      Since expectation is a positive operator on the set of simple r . v . ′ s r.v.'s r.v.s,
      既然期望是在简单随机变量集合上的正的运算

      it is clear that the definition above for E { X } E\{X\} E{X} coincides with Definition 9.1.
      则上面的关于期望的定义和定义9.1是一致的

      定义9.1里面的关于期望的定义为 E { X } = ∑ i = 1 n a i P ( A i ) E\{X\} = \sum_{i=1}^{n} a_i P(A_i) E{X}=i=1naiP(Ai)
      思考这里的一致性是为什么?

Remark

  • Note that E { X } ≥ 0 E\{X\}\ge 0 E{X}0,but we can have E { X } = ∞ E\{X\}=\infty E{X}=,even when X X X is never equal + ∞ +\infty +.
    注意到 E { X } ≥ 0 E\{X\}\ge 0 E{X}0 ,但是我们可以有 E { X } = ∞ E\{X\}=\infty E{X}=,即使随机变量 X X X不等于无穷。

  • Finally, let X X X be an arbitrary r . v . r.v. r.v..
    最后,令 X X X 为任意的随机变量

    Let X + = m a x ( X , 0 ) X − = − m i n ( X , 0 ) X^+ = max(X,0) \quad X^- = - min(X,0) X+=max(X,0)X=min(X,0).

    Then
    X = X + − X − ∣ X ∣ = X + + X − X = X^+ - X^- \quad |X| = X^+ + X^- X=X+XX=X++X
    and X + , X − X^+,X^- X+,X are positive r . v . s r.v.s r.v.s.

Definition 9.2

  • A r . v .   X r.v. \ X r.v. X has a finite expectation (is “integrable”) if both E { X + } E\{X^+\} E{X+} and E { X − } E\{X^-\} E{X} are finite.
    E { X + } E\{X^+\} E{X+} E { X − } E\{X^-\} E{X} 都是有限的,则随机变量 X X X 期望有限(也叫做可积)

    In this case, its expectation is the number 期望是两数之和
    E { X } = E { X + } + E { X − } (4) E\{X\} = E\{X^+\} + E\{X^-\} \tag{4} E{X}=E{X+}+E{X}(4)

also written ∫ X ( w ) d P ( w ) \int X(w) dP(w) X(w)dP(w) or ∫ X d P \int XdP XdP

  • If X > 0 X>0 X>0 then X − = 0 X^- =0 X=0 and X + = X X^+=X X+=X and, since obviously E { 0 } = 0 E\{0\}=0 E{0}=0,this definition coincides with (3)
    如果 X > 0 X>0 X>0 ,则 X − = 0 X^- =0 X=0 X + = X X^+=X X+=X E { 0 } = 0 E\{0\}=0 E{0}=0,在这种情况下,和式(3)一致

We write L 1 \mathcal{L}^1 L1 to denote the set of all integrable r . v . s r.v.s r.v.s. (Sometimes we write L 1 ( Ω , A , P ) \mathcal{L}^1 (\Omega,\mathcal{A},P) L1(Ω,A,P) to remove any possible ambiguity.)
L 1 \mathcal{L}^1 L1 代表所有可积的随机变量的集合

  • A r . v .   X r.v. \ X r.v. X admits an expectation if E { X + } E\{X^+\} E{X+} and E { X − } E\{X^-\} E{X} are not both equal to + ∞ +\infty +.
    随机变量 X X X有期望,则 E { X + } E\{X^+\} E{X+} E { X − } E\{X^-\} E{X} 不都等于正无穷。

    • Then the expectation of X X X is still given by (4), with the conventions + ∞ + a = + ∞ +\infty+a=+\infty ++a=+ and − ∞ + a = − ∞ -\infty+a=-\infty +a= when a ∈ R a\in \R aR.
      X X X的期望还是和(4)式一样,因为 + ∞ + a = + ∞ +\infty+a=+\infty ++a=+ − ∞ + a = − ∞ -\infty+a=-\infty +a= a ∈ R a\in \R aR.
    • If X ≥ 0 X\ge 0 X0 this definition again coincides with (3)
      如果 X ≥ 0 X\ge 0 X0 ,则(4)和(3)是一致的
    • Note that if X X X admits an expectation, then E { X } ∈ [ − ∞ , + ∞ ] E\{X\} \in [-\infty,+\infty] E{X}[,+], and X X X is integrable if and only if its expectation is finite.
      如果 X X X有期望,则 E { X } ∈ [ − ∞ , + ∞ ] E\{X\} \in [-\infty,+\infty] E{X}[,+],
      X X X 可积 ⇔ \Leftrightarrow 期望有限

Remark 9.1

When Ω \Omega Ω is finite or countable we have thus two different definitions for the expectation of a r . v .   X r.v. \ X r.v. X, the one above and the one given in Chapter 5.
Ω \Omega Ω 是有限或可数,则有两个不同的关于随机变量 X X X 的期望定义,一个是上面给出的,另一个是第五章给出的

In fact these two definitions coincides: it is enough to verify this for a simple r . v .   X r.v. \ X r.v. X, and in this case the formulas (5.1) and (9.2) are identical.
事实上,这两种定义是一致的

E { X } = ∑ j ∈ T ′ j P ( X = j ) (5.1) E\{X\} = \sum_{j \in T'} j P(X=j) \tag{5.1} \\ E{X}=jTjP(X=j)(5.1)

E { X } = ∑ i = 1 n a i P ( A i ) (9.2) E\{X\} = \sum_{i=1}^n a_i P(A_i) \tag{9.2} E{X}=i=1naiP(Ai)(9.2)

这个留作练习,下次课讲

Theorem 9.1

  • (a) L 1 \mathcal{L}^1 L1 is a vector space, and expectation is a linear map on L 1 \mathcal{L}^1 L1, and it is also positive ( i . e . X ≥ 0 ⇒ E { X } ≥ 0 i.e. X \ge 0 \Rightarrow E\{X\}\ge 0 i.e.X0E{X}0).
    L 1 \mathcal{L}^1 L1 是一个向量空间,期望是 L 1 \mathcal{L}^1 L1上的线性映射,它也是正的。

If further 0 ≤ X ≤ Y 0\le X \le Y 0XY are two r . v . s r.v.s r.v.s and Y ∈ L 1 Y \in \mathcal{L}^1 YL1 and E { X } ≤ E { Y } E\{X\}\le E\{Y\} E{X}E{Y}.

  • (b) X ∈ L 1 X\in \mathcal{L}^1 XL1 iff ∣ X ∣ ∈ L 1 |X| \in \mathcal{L}^1 XL1 and in this case ∣ E { X } ∣ ≤ E { ∣ X ∣ } |E \left\{ X \right\}| \le E \left\{ |X| \right\} E{X}E{X}.

    In particular any bounded r . v . r.v. r.v. is integrable.

  • © If X = Y X = Y X=Y almost surely ( s . a . s.a. s.a.) , then E { X } = E { Y } E \left\{ X \right\}= E \left\{ Y \right\} E{X}=E{Y}.

    X = Y  a.s. if  P ( X = Y ) = P ( { w : X ( w ) = Y ( w ) } ) = 1 X = Y \text{ a.s. if } P(X=Y)=P(\{w:X(w)=Y(w)\})=1 X=Y a.s. if P(X=Y)=P({w:X(w)=Y(w)})=1

  • (d) (Monotone convergence theorem): 单调收敛定理

    If the r . v . s r.v.s r.v.s X n X_n Xn are positive and increasing a . s . a.s. a.s. to X X X, then lim ⁡ n → ∞ E { X n } = E { X } \lim_{n\to \infty}E \left\{ X_n \right\} = E \left\{ X \right\} limnE{Xn}=E{X} (even if E { X } = ∞ E \left\{ X \right\}= \infty E{X}=).

  • (e) (Fatou’s lemma):

    If the r . v . s r.v.s r.v.s X n X_n Xn satisfy X n > Y X_n > Y Xn>Y a . s . a.s. a.s. ( Y ∈ L 1 Y \in \mathcal{L}^1 YL1), all n n n, we have
    E { lim ⁡ n → ∞ inf ⁡ E { X n } } ≤ lim ⁡ n → ∞ inf ⁡ E { X n } E \left\{ \lim_{n \to \infty} \inf E \left\{ X_n \right\} \right\} \le \lim_{n \to \infty} \inf E \left\{ X_n \right\} E{nliminfE{Xn}}nliminfE{Xn}
    In particular, if X n ≥ 0 X_n \ge 0 Xn0 a . s . a.s. a.s. then
    E { lim ⁡ n → ∞ inf ⁡ X n } ≤ lim ⁡ n → ∞ inf ⁡ E { X n } E \left\{ \lim_{n \to \infty} \inf X_n \right\} \le \lim_{n \to \infty} \inf E \left\{ X_n \right\} E{nliminfXn}nliminfE{Xn}

  • (f) (Lebesgue’s dominated convergence theorem): 勒贝格控制收敛定理

    If the r . v . s r.v.s r.v.s X n X_n Xn converge a . s . a.s. a.s. to X X X and if ∣ X n ∣ ≤ Y   a . s . ∈ L 1 |X_n|\le Y \ a.s. \in \mathcal{L}^1 XnY a.s.L1, all n n n,

    then X n ∈ L 1 , X ∈ L 1 X_n \in \mathcal{L}^1, X \in \mathcal{L}^1 XnL1,XL1 and E { X n } → E { X } E \left\{ X_n \right\} \to E \left\{ X \right\} E{Xn}E{X}.

Statement

  • The a . s . a.s. a.s. equality between r . v . s r.v.s r.v.s is clearly an equivalence relation, and two equivalent (i.e. almost surely equal) r.v.s have the same expectation:
    在随机变量间的几乎必然相等时一个等价关系,两个几乎必然相等的随机变量具有相同的表示。

    Thus :

    one can define a space L 1 L^1 L1 by considering " L 1 \mathcal{L}^1 L1 modulo this equivalence relation"

  • In other words, an element of L 1 L^1 L1 is an equivalence class, that is a collection of all r . v . r.v. r.v. in L 1 \mathcal{L}^1 L1 which are pairwise a . s . a.s. a.s. equal.
    L 1 L^1 L1 是一个相等的类,是所有在 L 1 \mathcal{L}^1 L1 上的两两相等的类

  • In view of © above, one may speak of the “expectation” of the equivalence class (which is the expectation of any one element belonging to this class).
    鉴于上面的(c),可以说等价类的“期望”(对属于该类的任何一个元素的期望)。

  • Since further the addition of r . v . s r.v.s r.v.s or the product of a r . v . r.v. r.v. by a constant preserve a . s . a.s. a.s. equality, the set L 1 L^1 L1 is also a vector space.
    随机变量的加法或者乘法by a constant preserve a . s . a.s. a.s. equality,则 L 1 L^1 L1 集合也是一个向量空间。

    Therefore, we commit the (innocuous) abuse of identifying a r . v . r.v. r.v. with its equivalence class, and commonly write X ∈ L 1 X \in L^1 XL1 instead of X ∈ L 1 X \in \mathcal{L}^1 XL1.

  • If 1 ≤ p < ∞ 1\le p < \infty 1p<, we define L p \mathcal{L}^p Lp to be the space of r . v . s r.v.s r.v.s such that ∣ X ∣ p ∈ L 1 |X|^p \in \mathcal{L}^1 XpL1 ;

    L p L^p Lp is defined analogously to L 1 L^1 L1.
    L p L^p Lp L 1 L^1 L1的定义类似

    That is, L p L^p Lp is L p \mathcal{L}^p Lp modulo the equivalence relation “almost surely”.

  • Put more simply, two elements of L p \mathcal{L^p} Lp that are a . s . a.s. a.s. equal are considered to be representatives of one element of L p L^p Lp.



Two auxiliary results.

Result 1

  For every positive r.v. X X X there exists a sequence { X n } n ≥ 1 \{X_n\}_{n\ge 1} {Xn}n1 of positive simple r.v.s which increases toward X X X as n n n increases to infinity.

  An example of such a sequence is given by 为什么要定义为 k 2 n \frac{k}{2^n} 2nk
X n ( w ) = { k 2 n i f   k 2 n ≤ X ( w ) < k + 1 2 n   a n d   0 ≤ k ≤ n 2 n − 1 n i f   X ( w ) ≥ n X_n(w) = \left\{ \begin{array}{lll} \frac{k}{2^n} & if \ \frac{k}{2^n} \le X(w) < \frac{k+1}{2^n} \ and \ 0 \le k \le n2^{n}-1 \\ n & if \ X(w) \ge n \end{array} \right. Xn(w)={2nknif 2nkX(w)<2nk+1 and 0kn2n1if X(w)n

Result 2

​ If X X X is a positive r.v., and if { X n } n ≥ 1 \{X_n\}_{n\ge 1} {Xn}n1 is any sequence of positive simple r.v.s increasing to X X X, then E { X n } E\{X_n\} E{Xn} increases to E { X } E\{X\} E{X}.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值