SVD奇异值分解

一、 SVD的含义

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广,其目的是为了提取一个矩阵最重要的特征。
奇异值分解的公式为:
在这里插入图片描述
其中U为m×m的酉矩阵,也是左奇异矩阵; 在这里插入图片描述为V的共轭转置矩阵为n×n的酉矩阵,也是右奇异矩阵。(酉矩阵是正交矩阵往复数域上的推广);Σ是这n个特征值为主对角线的n×n维矩阵,也是奇异值矩阵。

二、 SVD的计算

1、特征值的求法公式
在这里插入图片描述
2、 在这里插入图片描述的特征向量组成的是SVD中的V矩阵;在这里插入图片描述 的特征向量组成的是SVD中的U矩阵。证明:
在这里插入图片描述
所以在这里插入图片描述的特征向量组成的是SVD中的V矩阵;
同理:
在这里插入图片描述
所以在这里插入图片描述的特征向量组成的是SVD中的U矩阵。
3、得到矩阵A时:
(1)首先求出在这里插入图片描述在这里插入图片描述的值。
(2)其次求出在这里插入图片描述的特征值和特征向量以及在这里插入图片描述特征值和特征向量。
(3)求出奇异值(可以通过对在这里插入图片描述的特征值求平方根来求出奇异值,也可以通过公式在这里插入图片描述可以求得)。
(4)最后可得到奇异值分解 在这里插入图片描述

三、 分析SVD的作用

1、 SVD在降维方向上的使用:在所有的SVD介绍中,介绍SVD用于PCA的是最多的,SVD在降维方面的用法有很多,比如数据压缩和去噪等。
2、 可以用来做成推荐列表,通过对客户的浏览,进行特征分解,来了解他们的需求,进行相关推荐。
3、 对图像的压缩和解压,图像的像素大小可以看做是一个矩阵,通过奇异值分解将矩阵分解成若干个秩之和,进行压缩和解压。

四、 学习SVD的总结

1、 在对SVD的学习中,发现对线性代数的知识要有一定的了解,才能够理解SVD的含义,其中对线性代数的特征值、特征向量、对称矩阵等知识的掌握要求很高。
2、 在学习SVD的过程中,学习了关于酉矩阵的知识,Σ的相关知识和PCA(主成分分析原理)以及其他跟SVD相关的知识,有了一个大概的了解。
3、 SVD是很有用的,但是在实际生活中运用时,运算量很大需要和机器语言相结合,来减少计算压力更好的使用SVD。

望各位大神批评指正!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值