SVD奇异值分解详解

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

    我们首先回顾下特征值和特征向量的定义如下:

Ax=λx

    其中A是一个 n×n

的矩阵, x 是一个 n 维向量,则我们说 λ 是矩阵A的一个特征值,而 x 是矩阵A的特征值 λ

所对应的特征向量。

    求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的 n

个特征值 λ1λ2...λn ,以及这 n 个特征值所对应的特征向量 {w1,w2,...wn} ,那么矩阵A就可以用下式的特征分解表示:
A=WΣW1

    其中W是这 n

个特征向量所张成的 n×n 维矩阵,而 Σ 为这n个特征值为主对角线的 n×n

维矩阵。

    一般我们会把W的这 n

个特征向量标准化,即满足 ||wi||2=1 , 或者说 wTiwi=1 ,此时W的 n 个特征向量为标准正交基,满足 WTW=I ,即 WT=W1

, 也就是说W为酉矩阵。

    这样我们的特征分解表达式可以写成

A=WΣWT

    注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2.  SVD的定义

    SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个 m×n

的矩阵,那么我们定义矩阵A的SVD为:
A=UΣVT

    其中U是一个 m×m

的矩阵, Σ 是一个 m×n 的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个 n×n 的矩阵。U和V都是酉矩阵,即满足 UTU=I,VTV=I

。下图可以很形象的看出上面SVD的定义:

    那么我们如何求出SVD分解后的 U,Σ,V

这三个矩阵呢?

    如果我们将A的转置和A做矩阵乘法,那么会得到 n×n

的一个方阵 ATA 。既然 ATA 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(ATA)vi=λivi

    这样我们就可以得到矩阵 ATA

的n个特征值和对应的n个特征向量 v 了。将 ATA 的所有特征向量张成一个 n×n

的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

    如果我们将A和A的转置做矩阵乘法,那么会得到 m×m

的一个方阵 AAT 。既然 AAT 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
(ATA)ui=λiui

    这样我们就可以得到矩阵 AAT

的m个特征值和对应的m个特征向量 u 了。将 AAT 的所有特征向量张成一个 m×m

的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

    U和V我们都求出来了,现在就剩下奇异值矩阵 Σ

没有求出了。由于 Σ 除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值 σ

就可以了。

    我们注意到:

A=UΣVTAV=UΣVTVAV=UΣAvi=σiuiσi=Avi/ui

     这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ

    上面还有一个问题没有讲,就是我们说 ATA

的特征向量组成的就是我们SVD中的V矩阵,而 AAT 的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。
A=UΣVTAT=VΣUTATA=VΣUTUΣVT=VΣ2VT

    上式证明使用了: UTU=I,ΣT=Σ

可以看出 ATA 的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 AAT

的特征向量组成的就是我们SVD中的U矩阵。

    进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

σi=λi

    这样也就是说,我们可以不用 σi=Avi/ui

来计算奇异值,也可以通过求出 ATA

的特征值取平方根来求奇异值。

3. SVD计算举例

    这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

A=011110

    我们首先求出 ATA

AAT

ATA=(011110)011110=(2112)

AAT=011110(011110)=110121011

     进而求出 ATA

的特征值和特征向量:
λ1=3;v1=(1/21/2);λ2=1;v2=(1/21/2)

    接着求 AAT

的特征值和特征向量:

λ1=3;u1=1/62/61/6;λ2=1;u2=1/201/2;λ3=0;u3=1/31/31/3

 

    利用 Avi=σiui,i=1,2

求奇异值:

011110(1/21/2)=σ11/62/61/6σ1=3

011110(1/21/2)=σ21/201/2σ2=1

当然,我们也可以用 σi=λi

直接求出奇异值为 3

和1.

 最终得到A的奇异值分解为:

A=UΣVT=1/62/61/61/201/21/31/31/3300010(1/21/21/21/2)

      

4. SVD的一些性质 

    上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有什么重要的性质值得我们注意呢?

    对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

Am×n=Um×mΣm×nVTn×nUm×kΣk×kVTk×n

    其中k要比n小很多,也就是一个大的矩阵A可以用三个小的矩阵 Um×k,Σk×k,VTk×n

来表示。如下图所示,现在我们的矩阵A只需要灰色的部分的三个小矩阵就可以近似描述了。

    由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对SVD用于PCA降维做一个介绍。

5. SVD用于PCA

    在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 XTX

的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 XTX

,当样本数多样本特征数也多的时候,这个计算量是很大的。

    注意到我们的SVD也可以得到协方差矩阵 XTX

最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵 XTX ,也能求出我们的右奇异矩阵 V

。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

    另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

    假设我们的样本是 m×n

的矩阵X,如果我们通过SVD找到了矩阵 XXT 最大的d个特征向量张成的 m×d 维矩阵U,则我们如果进行如下处理:
Xd×n=UTd×mXm×n

    可以得到一个 d×n

的矩阵X‘,这个矩阵和我们原来的 m×n 维样本矩阵X相比,行数从m减到了k,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。
  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值