hdu 6395 (整除分块+矩阵快速幂)

小记:

该题的表达式是
[ F n F n − 1 1 ] = [ 3 D C [ P n ] 1 0 0 0 0 1 ] ∗ [ F n − 1 F n − 2 1 ] \left[ \begin{matrix} F_n \\ F_{n-1} \\ 1\\ \end{matrix} \right]=\left[ \begin{matrix}3 D & C & [\frac{P}{n}] \\ 1 & 0 & 0\\ 0 & 0 & 1 \end{matrix} \right]*\left[ \begin{matrix} F_{n-1} \\ F_{n-2}\\ 1\\ \end{matrix} \right] FnFn11=3D10C00[nP]01Fn1Fn21
建议先看代码,再看我其他瞎bb的。

代码是参考htx学长👦的,代码风格值得点赞 。

矩阵快速幂

1.注意矩阵乘法不可以用交换律,因此左乘和右乘不一样。

2.精度问题要注意,可以用加 (ll)的方式转换。

整除分块:

举P=21,n=13为例子:


l=3,得到这个值k=21/3=7

问有多少个矩阵会相同都取k=7,那么也就是P被分成7份,每份最少是l个,最多是P/7=3个。

即 [l,P/3]=[3,3]之间的矩阵是相同的,即都是 [ D C 7 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 7 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00701


l=4,得到这个值k=21/4=5

也就是P被分成5份,每份的个数最少是l=4个,最多是P/5=4,

即i=[l,P/5]=[4,4]之间的矩阵是相同的,都是 [ D C 5 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 5 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00501


l=5,得到这个值k=21/5=4

也就是P被分成4份,每份的个数最少是l=5个,最多是P/4=5,

即i=[l,P/4]=[5,5]之间的矩阵是相同的,都是 [ D C 4 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 4 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00401


l=6,得到这个值k=21/6=3

也就是P被分成3份,每份的个数最少是l=6个,最多是P/3=7,

即i=[l,P/3]=[6,7]之间的矩阵是相同的,都是 [ D C 3 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 3 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00301


l=8,得到这个值k=21/8=2

也就是P被分成2份,每份的个数最少是l=8个,最多是P/2=10,

即i=[l,P/2]=[8,10]之间的矩阵是相同的,都是 [ D C 2 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 2 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00201


l=11,得到这个值k=21/11=1

也就是P被分成1份,每份的个数最少是l=11个,最多是P/1=21,

又因为n=13<P/1,

故[l,P/1]=[11,13]之间的矩阵是相同的,都是 [ D C 1 1 0 0 0 0 1 ] \left[ \begin{matrix}D & C & 1 \\1 & 0 & 0\\0 & 0 & 1 \\\end{matrix} \right] D10C00101

代码

#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+7;
typedef long long ll;
struct Mat{
    int a[3][3],n;
    Mat(){ memset(a,0,sizeof(a));n=3;}
    int* operator[](int x){return a[x];}
    Mat operator *(Mat bb)
    {
        Mat dst;
        for(int r=0;r<n;++r)
            for(int c=0;c<n;++c)
                for(int k=0;k<n;++k)
                    dst[r][c]=(dst[r][c]+(ll)a[r][k]*bb[k][c]%mod)%mod;  
                    //tip:对其中一个数变ll,那么这个算式也会自动转ll ;这里不加ll也会wa
        return dst;
    }

};
Mat matrix_pow(Mat rst,int n)
{
    Mat dst;
    for(int i=0;i<rst.n;++i)dst[i][i]=1;
    while(n)
    {
        if(n&1)dst=rst*dst; //这里左乘还是右乘都没有关系,还不明白原因
        rst=rst*rst;
        n=n>>1;
    }
    return dst;
}

int A,B,C,D,P,n;
int solve()
{
    Mat src;
    if(n==1)return A;
    if(n==2)return B;
    for(int i=0;i<src.n;++i)src[i][i]=1;
    for(int l=3,k,r;l<=n;l=r+1)
    {
        k=P/l;
        r= k&&(P/k)<n ? P/k:n;  //这个地方体现的就是整除分块
        Mat rst;
        rst[0][0]=D;
        rst[0][1]=C;
        rst[0][2]=k;
        rst[1][0]=1;
        rst[2][2]=1;
        rst=matrix_pow(rst,r-l+1);
        src=rst*src;          //这里是矩阵乘法的坑点,注意左乘和右乘是有区别的,而在这题目中,我们用的是左乘。
    }
    return ((ll)src[0][0]*B%mod+(ll)src[0][1]*A%mod+src[0][2])%mod;

}
int main(void)
{
//    freopen("in.text","r",stdin);
    int cas;
    scanf("%d",&cas);
    while(cas--)
    {
        cin>>A>>B>>C>>D>>P>>n;
        printf("%d\n",solve());
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Mally呀!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值