bro_donkey
码龄6年
关注
提问 私信
  • 博客:13,697
    13,697
    总访问量
  • 14
    原创
  • 145,719
    排名
  • 122
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:黑龙江省
  • 加入CSDN时间: 2018-09-19
博客简介:

qq_43238825的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    183
    当月
    2
个人成就
  • 获得116次点赞
  • 内容获得13次评论
  • 获得194次收藏
创作历程
  • 4篇
    2024年
  • 7篇
    2023年
  • 3篇
    2022年
成就勋章
兴趣领域 设置
  • 网络空间安全
    web安全
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

论文笔记《LLMRec: Large Language Models with Graph Augmentation for Recommendation》

香港大学和百度合作发表在WSDM 2024的一篇文章。目光聚焦在解决侧信息用来辅助推荐时出现的数据噪声、数据异构型以及数据不完整性问题,提出了采用三种图增强策略的LLMRec框架。
原创
发布博客 2024.07.02 ·
1278 阅读 ·
7 点赞 ·
1 评论 ·
33 收藏

论文分享 《Mitigating Hidden Confounding Effects for Causal Recommendation》

公式繁多,本人理解不够透彻,大致只能够明白思路,从文章中可以看出作者做了许多的工作,无论是在理论上还是实验内容上的内容量都是十分丰富的。总体来说这篇文章难度十分的高(可能内容难度不大,但是需要理解原理)。
原创
发布博客 2024.05.05 ·
678 阅读 ·
15 点赞 ·
3 评论 ·
22 收藏

论文阅读《Prompt Distillation for Efficient LLM-based Recommendation》

U\mathcal UU:用户集合,I\mathcal II:物品集合,uiu,iui:具体用户和物品序列推荐: 每个用户有自己的历史交互序列,根据给定的用户和物品交互序列,预测该用户下一项的点击物品。TopN推荐:给定用户以及一个候选物品列表,向给定的用户推荐一个项目列表,该列表内包含的是候选列表中N个最有可能交互的且用户未曾交互的物品。解释性推荐:给定一个用户-物品对(u,i),生成一个解释来证明为什么要向该用户推荐该物品(比如:价格合理)。
原创
发布博客 2024.04.07 ·
2016 阅读 ·
16 点赞 ·
0 评论 ·
51 收藏

论文阅读《Addressing Confounding Feature Issue for Causal Recommendation》

视频推荐去除视频长度混淆因素的方法,可进行推广
原创
发布博客 2024.01.01 ·
2087 阅读 ·
33 点赞 ·
0 评论 ·
39 收藏

论文分享《Fair representation learning for recommendation: a mutual information perspectivee》

针对推荐系统受到敏感属性的影响造成不公平的推荐的问题,作者提出的方法是用一个新的双重互信息目标重新定义了公平性,以此来提供推荐地公平性,同时避免准确性下降。之后设计了一个基于协同过滤的Fair Mutual Information(FairMI)框架,使用该框架可以生成嵌入可以在删除敏感的信息的同时保留尽可能多的非敏感信息。IX;YHX−HX∣Y1协同过滤基本概念:U∣U∣MU(|U| = M)U∣U∣MV。
原创
发布博客 2023.12.04 ·
329 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文分享 Be Causal: De-biasing Social Network Confounding in Recommendation

作者根据因果推断中的混淆分析,提出了一种名为DENC(De-bias Network Confounding in Recommendation)的无偏且健壮的方法。总体上,DENC从内在因素(例如,潜在用户或物品因素)和辅助网络的角度提供了关于MNAR的因果分析。DENC中提出的曝光模型可以同时控制社交网络混淆并保留观察到的曝光信息。作者还通过平衡表示学习开发了一个去混淆模型,以保留主要的用户和物品特征,从而使DENC在评分预测上具有很好的泛化性能。
原创
发布博客 2023.11.13 ·
422 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读《Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders》

在最近的大语言模型推荐系统当中,通常采用的是利用预训练语言模型(PLM)将项目文本描述信息(item text)编码为项目表示(item representation)。这种情况下,项目文本描述信息和项目表示之间的绑定可能过于紧密,会导致过度强调文本描述信息的特征的作用、夸大领域间的gap的负面影响等潜在问题。
原创
发布博客 2023.10.19 ·
835 阅读 ·
2 点赞 ·
1 评论 ·
3 收藏

论文阅读《Towards Universal Sequence Representation Learning for Recommender Systems》

论文阅读《Towards Universal Sequence Representation Learning for Recommender Systems》这是一篇由中国人民大学和阿里合作,发表在KDD 2022的文章。作者侯宇蓬是加州福利亚大学·圣迭戈的博士,本科和研究生就读于中国人民大学。他的主要研究方向主要是围绕着大语言模型和推荐系统展开。他的导师Wayne Xin Zhao,赵鑫是中国人大 AI box实验室的负责人。
原创
发布博客 2023.10.10 ·
343 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

CauseRec

基于历史行为学习用户表示是现代推荐系统的核心。序列推荐的最新进展证明了从给定行为序列中提取有效用户表示的有效性。尽管在此已经取得了重大进展,但作者认为,由于用户交互记录的噪声和稀疏性质,单独对观察行为序列进行建模可能最终导致系统脆弱和不稳定。在本文中,作者提出通过对反事实数据分布建模来学习准确和鲁棒的用户表示,这需要对噪声行为(攻击)不太敏感,并且更多地信任不可或缺的行为。具体地说,给定观察到的行为序列,作者设计的CauseRec框架在细粒度项目级别和抽象兴趣级别识别可有可无和不可或缺的概念。
原创
发布博客 2023.09.17 ·
179 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment

序列事件预测的目标是根据历史事件序列估计下一个事件,应用于序列推荐、用户行为分析和临床治疗。在实际应用中,下一事件预测模型是用一次采集到的序列数据进行训练的,需要推广到遥远未来的新到达的序列,这就要求模型处理从训练到测试的时间分布转移。在本文中,我们首先从数据生成的角度揭示了一个负面的结果,即由于潜在的上下文混杂因素,即历史事件和下一个事件的共同原因,现有的最大似然估计方法将无法应对分布转移。然后设计了一种新的基于后门调整的学习目标,并进一步利用变分推理使其易于处理序列学习问题。
原创
发布博客 2023.08.26 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阅读笔记:《Causal Inference for Knowledge Graph based Recommendation》

因果推断在知识图谱推荐论文的阅读笔记
原创
发布博客 2023.08.13 ·
711 阅读 ·
5 点赞 ·
1 评论 ·
6 收藏

《论文阅读》SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS

《SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS》阅读笔记
原创
发布博客 2022.11.27 ·
1235 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

《Dual Sparse Attention Network For Session-based Recommendation 》阅读

《Dual Sparse Attention Network For Session-based Recommendation 》阅读
原创
发布博客 2022.11.11 ·
546 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

论文阅读笔记《Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation》

Self-Supervised Hypergraph Convolutional Networks forSession-based Recommendation论文阅读
原创
发布博客 2022.10.27 ·
2748 阅读 ·
34 点赞 ·
2 评论 ·
32 收藏