《论文阅读》SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS

该文探讨了如何使用递归神经网络(RNN)进行会话推荐,尤其是通过门控循环单元(GRU)解决梯度消失问题。论文提出了session-parallel mini-batches、输出采样和排名损失等优化策略,以提高推荐系统的性能。实验部分展示了这些改进在电子商务和视频平台数据集上的效果,并与其他基线方法进行了对比,证明了RNN在会话推荐中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS

论文概况

论文发布在ICLR 2016上,首次将递归神经网络RNN应用于推荐系统,在传统RNN的基础上进行了GRU单元的优化,并且为了使实际效果更佳的好,进行了Seesion-Parallel、 Mini-BatchesSampling On The Output、Ranking Loss等改进。

GRU-based RNN

Alt

RNN的输入时会话的实际状态,输出是会话中下一个事件的item。

会话的状态可以是实际事件的item,也可以是会话中迄今为止的事件

前者中,使用1-of-N编码,即输入向量的长度等于item的长度,对应的item为1,其余为0。

后者中,使用representations的加权和来表示,如果事件发生的较早,则会对其进行折扣。

文章还尝试了添加额外的embedding层,但是i-of-N 编码的表现更好。

在最后的GRU层和输出之间再添加一个额外的Feedforward layers(前馈层)。

GRU

一般的RNN是使用公式(1)来更新隐藏状态h
h t = g ( W x t + U h t − 1 ) (1) \mathbf{h}_{\mathbf{t}}=g\left(W \mathbf{x}_{\mathbf{t}}+U \mathbf{h}_{\mathbf{t}-\mathbf{1}}\right)\tag{1} ht=g(Wxt+Uht1)(1)
其中g是一个光滑且有界的函数,并入logistic sig moid函数, x t x_t xt是t时刻的unit输入, h t h_t ht的作用就是,给定当前状态 h t h_t ht,RNN会输出序列中下一个元素的概率分布。

本文采用了由Cho等人在论文《 On the proper-ties of neural machine translation: Encoder-decoder approaches》提出的GRU(Gated Recurrent Unit),用来解决梯度消失的问题。

Alt

h t = ( 1 − z t ) h t − 1 + z t h t ^ (2) \mathbf{h}_{\mathbf{t}}=\left(1-\mathbf{z}_{\mathbf{t}}\right) \mathbf{h}_{\mathbf{t}-\mathbf{1}}+\mathbf{z}_{\mathbf{t}} \hat{\mathbf{h}_{\mathbf{t}}}\tag{2} ht=(1zt)ht1+ztht^(2)

z t = σ ( W z x t + U z h t − 1 ) (3) \mathbf{z}_{\mathbf{t}}=\sigma\left(W_{z} \mathbf{x}_{\mathbf{t}}+U_{z} \mathbf{h}_{\mathbf{t}-\mathbf{1}}\right)\tag{3} zt=σ(Wzxt+U

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值