论文笔记《LLMRec: Large Language Models with Graph Augmentation for Recommendation》

论文笔记《LLMRec: Large Language Models with Graph Augmentation for Recommendation》

简介

香港大学和百度合作发表在WSDM 2024的一篇文章。目光聚焦在解决侧信息用来辅助推荐时出现的数据噪声、数据异构型以及数据不完整性问题,提出了采用三种图增强策略的LLMRec框架。

问题形式化

图embedding目标,其中: E \mathcal{E} E是用户对物品的隐式反馈, E \mathbf{E} E是用户和物品的嵌入。
E ∗ = arg ⁡ max ⁡ E p ( E ∣ E + ) (1) \mathbf{E}^{*}=\arg\max_{\mathbf{E}}p(\mathbf{E}|\mathcal{E}^{+})\tag{1} E=argEmaxp(EE+)(1)
加入了侧信息的情况下任务目标,其中\mathbf{F}是物品的侧信息特征:
Θ ∗ = arg ⁡ max ⁡ Θ p ( Θ ∣ F , E + ) (2) \Theta^{*}=\arg\max_{\Theta}p(\Theta|\mathbf{F},\mathcal{E}^{+})\tag{2} Θ=argΘmaxp(Θ∣F,E+)(2)
本模型基于数据增强的任务目标,其中 E A 、 F A \mathcal{E}_{\mathcal{A}}、\mathbf{F}_{\mathcal{A}} EAFA是基于大模型生成的增强数据:
Θ ∗ = arg ⁡ max ⁡ Θ p ( Θ ∣ { F , F A } , { E + , E A } ) (3) \Theta^*=\underset{\Theta}{\arg\max}p(\Theta|\{\mathbf{F},\mathbf{F}_{\mathcal{A}}\},\{\mathcal{E}^+,\mathcal{E}_{\mathcal{A}}\})\tag{3} Θ=Θargmaxp(Θ∣{ F,FA},{ E+,EA})(3)

方法论

整体的框架如下,主要包含了数据增强、侧信息融合以及去噪优化三个部分。
在这里插入图片描述

数据增强的三种策略:

  1. 用户-物品交互增强,也就是增加边的数目
    i u + , i u − = L L M ( P u U I ) ; E B P R = E ∪ E A (4) i_{u}^{+},i_{u}^{-}=LLM(\mathbb{P}_{u}^{UI});\quad\mathcal{E}_{BPR}=\mathcal{E}\cup\mathcal{E}_{\mathcal{A}}\tag{4} iu+,iu=LLM(PuUI);EBPR=EEA(4)
    E A = { ( u , i u + , i u − ) ∣ ( u , i u + ) ∈ E A + , ( u , i u − ) ∈ E A − } (5) \mathcal{E}_{\mathcal{A}}=\{(u,i_{u}^{+},i_{u}^{-})|(u,i_{u}^{+})\in\mathcal{E}_{\mathcal{A}}^{+},(u,i_{u}^{-})\in\mathcal{E}_{\mathcal{A}}^{-}\}\tag{5} EA={(u,iu+,iu)(u,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值