贝叶斯练习题

本文介绍了贝叶斯公式及其在朴素贝叶斯分类方法中的应用,详细阐述了朴素贝叶斯分类的原理和步骤。同时,讨论了人工智能与机器学习的区别,以及机器学习中的过拟合和欠拟合现象,包括它们的原因和解决方案。最后,分析了贝叶斯算法的优缺点,指出其在处理数据独立性假设时的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 请写出贝叶斯公式,请描述朴素贝叶斯分类方法的原理和步骤。

  • 贝叶斯公式

在这里插入图片描述

P(Ci): 先验概率      P(Ci|**x**): 后验概率        P(x|Ci): 条件概率
  • 朴素贝叶斯分类方法原理

    基于属性的条件独立假设(每个属性独立地对分类结果产生影响)

    在这里插入图片描述
    朴素贝叶斯的基本公式:
    在这里插入图片描述
    由于分母对所有类别都是相同的,所以朴素贝叶斯分类器为:
    在这里插入图片描述

  • 朴素贝叶斯分类步骤
    在这里插入图片描述

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值