Machine Learning
文章平均质量分 74
Roger-Liu
ML
展开
-
《机器学习》笔记---3 Kernel Function(核函数)
Kernel Function定义通过映射,可以把低维空间的数据映射到高维空间,映射函数φ(x)表示这个映射关系。核函数和映射没有关系,核函数只是用来计算映射到高维空间之后的内积的一种简便方法。作用通过一个映射函数φ(x),将低维线性不可分问题,转化为高维线性可分(如SVM)。不通过映射关系来计算高维空间中的距离或角度,而是通过核函数来直接计算。优势:计算量小,明显低于映射到高维空间中...原创 2018-10-04 17:41:06 · 478 阅读 · 0 评论 -
手写数字识别-SVM方法
from sklearn import svmfrom matplotlib import pyplot as pltfrom sklearn.model_selection import train_test_splitimport pandas as pdtrain=pd.read_csv('Digit/train.csv')test=pd.read_csv('Digit/test...原创 2018-11-26 17:06:45 · 5578 阅读 · 0 评论 -
傅里叶变换,小波变换【转】
小波变换也是数据降维的一种,找到了一篇简单易懂的好文。http://www.360doc.com/content/15/0613/14/21899328_477836495.shtml转载 2018-12-29 12:13:56 · 406 阅读 · 1 评论 -
Batch Normolization(批归一化)
Why:Internal Covariate Shift:网络中间层在训练过程中,输入数据分布的改变。训练过程中参数会不断的更新,前面层训练参数的更新将导致后面层输入数据分布的变化。因此,模型参数要不断去适应这种随迭代变化的输入分布,这回导致模型参数学习很慢。如果能使每层的输入分布固定(如均值为0,方差为1的高斯分布),那么模型参数的学习将会更加容易。What: 将每层输入的...原创 2019-01-03 11:50:10 · 1160 阅读 · 0 评论 -
【经典神经网络】-AlexNet/VGG/GoogLeNet/ResNet
1 AlexNet(2012,ImageNet冠军,CNN用于图像分类的开山之作)结构:5 卷积层+3个全连接层(卷积核size:11,5,3)特点:ReLU 激活函数 (避免了sigmoid的梯度消失-反向传播的时候会连乘sigmoid的导数,初始值很大的话导数接近于0,导致前层网络梯度越来越小;计算量减小,加快了训练速度) LRN(Local Response Norma...原创 2019-03-03 11:40:33 · 830 阅读 · 0 评论 -
CTR算法总结
1 Logitic Regression是ctr预估模型的最基本的模型.优势:优势在于处理离散化特征,而且模型十分简单,很容易实现分布式计算。关于LR的变种也有许多,比如Google的FTRL,其实这些变种都可以看成:LR+正则化+特定优化方法缺点:特征与特征之间在模型中是独立的,需要进行大量的人工特征工程进行交叉特征组合;而且LR需要将特征进行离散化,归一化,在离散化过程中...转载 2019-04-24 17:53:47 · 2338 阅读 · 0 评论 -
【推荐系统】技术积累
目录1CSDDN特约专稿:个性化推荐技术漫谈a 推荐系统的特点:b 完整的推荐系统构成:c 协同过滤(Collaborative Filtering)1 user-based基于用户2 item-based基于内容项3 对item-based扩展性的改进(大数据量时)——聚类分析2 协同过滤a 近实时协同过滤算法工程实践b 协同过滤特点:...原创 2019-08-08 15:48:40 · 686 阅读 · 0 评论 -
【Interesting Blogs】
目录1 不一样的SVD(blog)2 推荐算法工程师 还有事可做吗?1 将业务转化为数学问题2 根据数据特性定义模型y = wx + sq + sp + pq3根据业务定义合理损失函数4 参数调优5计算量太大的离线算法优化和线上算法优化3 Accuracy vs Diversity4 推荐模型混合方法5. 推荐系统的动态模型1 不一样...原创 2019-08-08 23:26:06 · 355 阅读 · 0 评论 -
【基于LFM的电影推荐】
目录1 LFM(Latent Factor Model)原理2 LFM 特点3 基于LFM的电影推荐1 LFM(Latent Factor Model)原理隐语义模型思想:将user与item分别用一个F维的隐向量来表示,其乘积就表示用户对物品的评分或感兴趣程度。可以理解为:user并不是直接喜欢物品,而是喜欢F个类别,而item属于这F个类别,学习每个user对类别的感...原创 2019-08-19 11:06:40 · 1344 阅读 · 1 评论 -
【Start of DataScience】Titanic 预测分析
学了机器学习一个月了,跃跃欲试想实践一把。参考了kaggle上一篇非常详细的帖子,断断续续用了一个星期,自己一步一步地完成了Titanic的预测分析,也算是入了门。看会和写出来再到生成文件提交上去,整个流程做下来遇到了各种各样的问题。作图不会注释怎么办?中文显示乱码怎么办?panda是切片loc和iloc用哪个? 训练的时候显示 y 标签为(n_samples,1)和(n_samples,)不...原创 2018-11-04 21:32:22 · 481 阅读 · 0 评论 -
【sklearn实例】5--数据标准化/归一化
1 标准化&归一化Standardization:z-score标准化将数据均值转化为0,标准差转化为1。处理后的数据符合标准正态分布。Normalization: min-max归一化(0 ~ 1)利用最大最小值,将数据进行线性转化,范围落在(0 ~ 1)。归一化到任意区间(a ~ b)(1)首先找到原样本数据集的最小值Min及最大值Max...原创 2018-10-24 17:08:52 · 4119 阅读 · 1 评论 -
转-【特征工程汇总】--"使用sklearn做单机特征工程"
看到关于特征工程的,最为详细的介绍。https://www.cnblogs.com/jasonfreak/p/5448385.html转载 2018-10-25 21:29:35 · 169 阅读 · 0 评论 -
数据 归一化(标准化)
作用当样本的各个特征的数量级相差较大,那么不同特征对模型的影响也会有较大的差别。为了使每个特征都具有相同的重要性,通过归一化(标准化),来把所有特征的范围化为同一量级。常见方法Standardization利用均值与标准差来计算,最终取值范围是[-1 , 1]Min-Max Scaling利用最小值和最大值来计算,取值范围是[0 , 1]应用KNN中、岭回归...原创 2018-10-05 09:11:25 · 283 阅读 · 0 评论 -
回归中的缩减法
作用通过引入惩罚项,能够减少不重要的参数。通过比较经过不同程度缩减得到的系数,我们可以看出特征的重要程度(系数越大,对结果影响越大),从而更好地理解数据,有助于模型的改进。方法岭回归:线性回归时,如果特征比样本点还多(n>m),此时输入矩阵X将不是满秩矩阵,则无法求逆,最小二乘法(Ordinary Least Squares)将无法求解:此时引入一个单位矩阵 λI ,从而使矩阵非...原创 2018-10-05 10:37:12 · 1500 阅读 · 0 评论 -
《机器学习》笔记——1 模型的评估方法
测试集与训练集我们无法直接获得泛化误差,而训练误差又由于过拟合现象的存在而不适合作为评估标准。通常需要一个测试集来测试模型对新样本的学习能力,用测试集的测试误差作为泛化误差的近似。所以,一个包含 m 个样例的数据集D,需要进过处理,从中产生出训练集 S 和测试集 T,来进行模型的学习和测试。评估方法1 留出法直接将数据集D划分为两个互斥的集合,一个做训练集 S,一个作为测试集 T。...原创 2018-10-05 20:14:35 · 334 阅读 · 0 评论 -
贝叶斯练习题
1 请写出贝叶斯公式,请描述朴素贝叶斯分类方法的原理和步骤。贝叶斯公式朴素贝叶斯假设: -特征之间相互独立(统计意义上,一个特征出现的可能性与其他特征没有关系,朴素的意义) -各特征同等重要P(Ci): 先验概率P(Ci|**x**): 后验概率素贝叶斯分类方法原理 依据给定的资料,统计各个特征在相应类别下的概率,从而实现分类。朴素贝叶斯分类步骤⑴收集数据:可...原创 2018-09-27 21:39:55 · 10193 阅读 · 0 评论 -
【sklearn实例】2--支持向量机SVM
1 支持向量机思想:建立可以分类的超平面,距离超平面最近的点称为支持向量,通过最大化支持向量到超平面的距离,来建立最佳分类超平面,完成分类。SVM是用来解决二分类问题的有监督学习算法,在引入了核方法之后SVM也可以用来解决非线性问题。一般SVM有下面三种:形式:线性可分支持向量机(硬间隔):当训练数据线性可分时,可通过硬间隔最大化学得一个线性可分支持向量机。线性支持向量机(...原创 2018-10-13 15:04:06 · 1343 阅读 · 0 评论 -
《机器学习》笔记---2 模型的损失函数与正则化
损失函数度量模型一次预测的好坏 L( Y,f(X) )常见类型:期望风险(风险函数)度量平均意义下的模型预测的好坏,即损失函数的期望。(关于 联行分布的期望,未知,无法直接计算)经验风险模型关于训练数据集的平均损失,当样本容量N–>∞,经验风险趋于期望风险。经验风险最小化,保证模型有很好的学习效果。结构风险(正则化)为防止过拟合而提出,在经验风险的基...原创 2018-10-07 10:54:54 · 528 阅读 · 0 评论 -
《机器学习》笔记--4 集成学习boosting and bagging
Boosting特点:个体学习器之间存在强依赖关系、必须串行生成的方法。关注偏差的降低。方法: 先从初始训练集选练出一个弱学习器,再根据弱学习器的表现进行样本分布的调整,提高那些被错误学习的样本的权值,降低那些被正确学习的样本的权值,然后继续训练下一个弱学习器。最后将一定数量的弱学习器进行组合,通过平均法或投票法,得到输出结果。AdaBoost: 加性模型,及若干个弱学习器的线性组合...原创 2018-10-18 11:10:09 · 249 阅读 · 0 评论 -
《机器学习》笔记--5 特征选择
原创 2018-10-18 19:23:41 · 323 阅读 · 0 评论 -
【sklearn实例】1-贝叶斯算法
问题朴素贝叶斯求解朴素贝叶斯公式:求解思想:即求先验概率与条件概率乘积的最大值求解注意:本人求解过程中忘记了 Laplace 平滑 (⊙︿⊙),但好在预测值里面没有学历为博士的一项,所以不平滑也不影响预测,但这样是不规范的。代码分析1 读取数据2 数据切片,转换(将字符型数据编码)3 划分训练集和测试集4 导入 sklearn 贝叶斯方法,拟合5 预...原创 2018-10-09 19:45:00 · 2715 阅读 · 1 评论 -
【sklearn实例】3--线性回归
线性回归思想通过学习,找到属性的线性组合来预测输出标记。损失函数一般采用均方误差作为损失函数:优化方法梯度下降法(不满秩情况使用,收敛较慢,有可能求得局部最小值)正规方程求解-最小二乘法(需要X是满秩的,即样本数大于特征数)形式一般线性回归岭回归(Ridge):防止过拟合,损失函数加入正则化项,L2范数lasso:加入正则化项,L1范数ElasticNet:...原创 2018-10-17 20:19:58 · 1016 阅读 · 0 评论 -
【sklearn实例】4--特征工程之离散值编码
离散特征离散特征变量类型可以分为有序类和无序类。无序类,价值相等且可区分,没有等级、顺序、排序、好坏等逻辑关系,各变量相互独立:性别(男/女)、颜色(赤橙黄绿青蓝紫)、登机口(A/B/C);有序类:各变量有级别大小等逻辑关系:尺码(L/XL/XXL)、学历(高/中/低)为何要编码对无序类:为何不能直接对特征进行赋值,比如male1,female0。这是不科学的,因为这样一来就存...原创 2018-10-22 20:32:29 · 3491 阅读 · 0 评论 -
【基于协同过滤算法的电影推荐】
目录1 协同过滤算法1.1 CF与 User/Item 推荐算法区别1.2 UserCF1.3 ItemCF2 评价指标3 基于userCF与itemCF电影推荐3.1 MovieLens数据集3.2 userCF代码实现3.3 K值影响实验(userCF)3.4itemCF代码实现3.5 K值影响实验(itemCF)4 userCF与ite...原创 2019-08-13 11:57:35 · 5526 阅读 · 3 评论