船舰在卫星监测下的精准检测对海洋资源管理、海上安全保障和军事战略部署意义重大,但传统人工判读卫星图像的检测手段耗时耗力且易受人为因素干扰,存在结果不准和漏检问题。基于改进 YOLOv8 的卫星下船舰检测算法借助深度学习技术,能快速处理海量卫星图像,精准识别各类船舰目标,通过优化网络结构和参数提升检测精度与速度,有效区分船舰与海洋背景。基于该算法构建的系统可实时获取卫星数据,快速检测跟踪船舰,发现异常及时警报,为相关部门提供决策依据,大幅提高海洋监测效率和海上安全管理水平,助力构建智能可靠的海洋监测体系,保障海洋经济发展和国家安全。
基于改进YOLOv8的卫星下的船舰检测算法
在海洋监测领域,实现对卫星图像中船舰的精准检测对维护海洋权益、保障海上安全以及促进海洋经济发展极为重要。船舰在广袤的海洋中活动,所处环境复杂,受到海面波浪起伏、海雾遮挡、太阳反光以及复杂海况等多种因素影响,加之船舰类型多样、尺度差异大,且在卫星图像中呈现的姿态各异,导致检测难度极高。准确且及时地检测出不同状态、不同类型的船舰,对于及时掌握海上动态、预防海上事故、执行军事任务等意义非凡。然而,传统的卫星下船舰检测手段面临诸多挑战,由于卫星图像背景复杂、噪声干扰多,并且船舰目标在图像中所占比例较小,传统算法常常难以精准识别船舰,出现误判、漏检等情况。
为突破这些困境,我们创新性地提出了一种基于改进 YOLOv8 结合 CBAM 的卫星下船舰检测算法,并成功搭建了配套检测系统。该算法依托 YOLOv8 高效强大的目标检测架构,