HMM

隐马尔可夫模型

概率图分为静态和动态两种,其中静态概率图可根据是否有向分为无向的贝叶斯网络和有向的马尔可夫随机场,而动态模型即有HMM,Kalman Filter和Particle Filter

HMM事实上是高斯混合模型的时间序列,各个观测变量 x i x_i xi之间并不是独立同分布的关系。而状态变量 z i z_i zi之间则是一个马尔可夫链。

在这里插入图片描述

根据上图,隐马尔可夫模型的观测变量 o o o o 1 , o 2 , … … , o t , … … o_1,o_2,……,o_t,…… o1,o2,,ot,观测空间 V = { v 1 , v 2 , … … , v M } V=\{v_1,v_2,……,v_M\} V={v1,v2,vM}状态变量 i i i i 1 , i 2 , … … , i t , … … , i_1,i_2,……,i_t,……, i1,i2,,it,,状态空间 Q = { q 1 , q 2 , … … , q N } Q=\{q_1,q_2,……,q_N\} Q={q1,q2,,qN}

一个模型

隐马尔可夫模型可描述为
λ = ( π , A , B ) \lambda=(\pi,A,B) λ=(π,A,B)

  • 其中 π \pi π代表的第一个状态的初始概率密度函数

  • 矩阵 A A A状态转移矩阵,即

    A = [ a i j ] , a i j = P ( i t + 1 = q j ∣ i t = q i ) A=[a_{ij}],a_{ij}=P(i_{t+1}=q_j|i_t=q_i) A=[aij]aij=P(it+1=qjit=qi)

  • 矩阵 B B B发射矩阵,即

B = [ b i j ] , b i j = P ( o t = v j ∣ i t = q i ) B=[b_{ij}],b_{ij}=P(o_t=v_j|i_t=q_i) B=[bij]bij=P(ot=vjit=qi)

两个假设

同时,隐马尔可夫模型具有两个假设,即1、齐次Markov假设。2、观察独立假设

  • 齐次Markov假设可以描述为
    P ( i i + 1 ∣ i t , i t − 1 , … … , t 1 , o t , o t − 1 , … … , o 1 ) = P ( i t + 1 ∣ i t ) P(i_{i+1}|i_t,i_{t-1},……,t_1,o_t,o_{t-1},……,o_1)=P(i_{t+1}|i_t) P(ii+1it,it1,,t1,ot,ot1,,o1)=P(it+1it)
  • 观测独立假设可以描述为
    P ( o t ∣ i t , i t − 1 , … … , i 1 , o t − 1 , … … , o 1 ) = P ( o t ∣ i t ) P(o_{t}|i_{t},i_{t-1},……,i_1,o_{t-1},……,o_1)=P(o_t|i_t) P(otit,it1,i1,ot1,o1)=P(otit)

三个问题

隐马尔可夫模型中有三个问题,1、Evaluation问题。2、Learning问题。3、Decoding问题。

  • Evaluation问题
    求解 P ( O ∣ λ ) P(O|\lambda) P(Oλ,即在已知模型的基础上,求解某一观测变量序列出现的概率。可以通过前向和后向两种算法进行求解。

  • Learning问题
    即通过后验概率求解模型参数 λ \lambda λ,可通过EM算法进行求解。

  • Decoding问题
    分为滤波和预测两种,可描述为 arg max ⁡ i P ( I ∣ O ) 。 \argmax_iP(I|O)。 iargmaxP(IO)
    如果是预测问题,则为 P ( i t + 1 ∣ o 1 , o 2 , … … , o t ) P(i_{t+1}|o_1,o_2,……,o_t) P(it+1o1,o2,,ot)
    如果是滤波问题,则为 P ( i t ∣ o 1 , o 2 , … … , o t ) 。 P(i_t|o_1,o_2,……,o_t)。 P(ito1,o2,,ot)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值