机器学习第一期(下):机器学习算法、线性回归模型、逻辑回归模型、决策树模型、最小二乘法、梯度下降、Sigmoid函数、损失函数、随机变量、熵、信息增益

接上篇文章:机器学习第一期(上):数学矩阵前置知识、机器学习前置知识、机器学习基础、机器学习类型,分类回归、机器学习过程、损失函数、过拟合与欠拟合、正则化项、训练误差与测试误差、模型选择、交叉验证、梯度下降算法

主要内容

  1. 线性回归模型
  2. 逻辑回归模型
  3. 决策树

线性回归模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最小二乘法

它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小。
在这里插入图片描述
我们假设输入属性(特征)的数目只有一个:
在这里插入图片描述
在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧式距离之和最小。
在这里插入图片描述

梯度下降法求解线性回归

在这里插入图片描述

逻辑回归模型

在这里插入图片描述线性回归健壮性不够,一旦有噪声,立刻“投降”
在这里插入图片描述
在这里插入图片描述
Sigmoid函数(压缩函数)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
由于逻辑回归的平方损失函数非凸,无法用梯度下降等最小化方法求解,因此,不能使用平方损失函数对逻辑回归问题进行求解。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

决策树模型

决策树是一种简单高效并且具有强解释性的模型,广泛应用于数据分析领域。其本质是一颗自上而下的由多个判断节点组成的树。

在这里插入图片描述
案例:预测小明今天出不出门打球
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
特征选择是决定用哪个特征来划分特征空间。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我们使用决策树模型的最终目的是利用决策树模型进行分类预测,预测我们给出的一组数据最终属于哪一种类别,这是一个由不确定到确定的过程,那么我们就选择使数据信息熵下降最快的特征作为分类节点,使得决策树尽快地趋于确定。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
决策树(ID3)的训练过程就是找到信息增益最大的特征,然后按照此特征进行分类,然后再找到各类型子集中信息增益最大的特征,然后按照此特征进行分类,最终得到符合要求的模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值