《Spark机器学习》笔记——Spark回归模型(最小二乘回归、决策树回归,模型性能评估、目标变量变换、参数调优)

数据集说明:

数据集下载地址

http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip

=========================================
hour.csv和day.csv都有如下属性,除了hour.csv文件中没有hr属性以外

- instant: 记录ID
- dteday : 时间日期
- season : 季节 (1:春季, 2:夏季, 3:秋季, 4:冬季)
- yr : 年份 (0: 2011, 1:2012)
- mnth : 月份 ( 1 to 12)
- hr : 当天时刻 (0 to 23)
- holiday : 当天是否是节假日(extracted from http://dchr.dc.gov/page/holiday-schedule)
- weekday : 周几
- workingday : 工作日 is 1, 其他 is 0.
+ weathersit : 天气
- 1: Clear, Few clouds, Partly cloudy, Partly cloudy
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp : 气温 Normalized temperature in Celsius. The values are divided to 41 (max)
- atemp: 体感温度 Normalized feeling temperature in Celsius. The values are divided to 50 (max)
- hum: 湿度 Normalized humidity. The values are divided to 100 (max)
- windspeed: 风速Normalized wind speed. The values are divided to 67 (max)
- casual: 临时用户数count of casual users
- registered: 注册用户数count of registered users
- cnt: 目标变量,每小时的自行车的租用量,包括临时用户和注册用户count of total rental bikes including both casual and registered

=========================================

使用sed 1d hour.csv > hour_noheader.csv去掉第一行

使用jupyter notebook进入开发环境





代码:

from pyspark import SparkContext#导入Spark的Python库
sc = SparkContext("local","bike")#本地运行。

path = "file:///home/chenjie/bike/hour_noheader.csv"#已将数据集放在此路径下,并已去掉第一行的头信息
raw_data = sc.textFile(path)#加载数据
records = raw_data.map(lambda x: x.split(","))#用,隔开,获得记录
num_data = raw_data.count()#得到总记录数
first = records.first()#得到第一行
print first#打印第一行
print num_data#打印总总记录数

def get_mapping(rdd, idx):
    return rdd.map(lambda fields: fields[idx]).distinct().zipWithIndex().collectAsMap()
#以上定义了一个映射函数:首先将第idx列的特征值去重,然后对每个值使用zipWithIndex函数映射到一个唯一的索引,这样就组成了一个RDD的键值映射
#键是变量,值是索引

print records.map(lambda fields: fields[2]).distinct().collect()
#输出结果为[u'1', u'3', u'2', u'4']
#表明第三列(季节)只有1,3,2,4四种取值

print "Mapping of first categorical feasture column: %s" % get_mapping(records, 2)
#Mapping of first categorical feasture column: {u'1': 0, u'3': 1, u'2': 2, u'4': 3}
#将1,3,2,4映射到0,1,2,3

mappings = [get_mapping (records, i) for i in range(2,10) ]#将记录中的每一列都这样映射
cat_len = sum(map(len, mappings))#类型变量的长度
num_len = len(records.first()[11:15])#实数变量的长度
total_len = num_len + cat_len#总长度
print "Feature vector length for categorical features : %d" % cat_len
print "Feature vector length for numerical features : %d" % num_len
print "Total feature vector length : %d" % total_len

#1、为线性模型创建特征向量
from pyspark.mllib.regression import LabeledPoint
import numpy as np

#以下函数为线性模型创建特征向量
def extract_features(record):
    cat_vec = np.zeros(cat_len)#先新建一个cat_len长度的0向量
    i = 0
    step = 0
    for field in record[2 : 9]:
        m = mappings[i]#某属性的特征map
        idx = m[field]#得到下标
        cat_vec[idx + step] = 1 #将cat_vec向量的对应位置置为1
        i = i + 1
        step = step + len(m)#步数往后走
    num_vec = np.array([float(field) for field in record[10 : 14]])#取出实数属性组成实数向量
    return np.concatenate((cat_vec, num_vec))#将类别向量和实数向量合并

def extract_label(record):
    return float(record[-1])

data = records.map(lambda r : LabeledPoint(extract_label(r), extract_features(r)))
first_point = data.first()
print "Raw data :" + str(first[2:]) 
print "Label:" + str(first_point.label)
print "Linear Model feature vector:\n" + str(first_point.features)
print "Linear Model feature vector length :" + str(len(first_point.features))

#以下部分代码创建决策树的特征向量
def extract_features_dt(record):
    return np.array(map(float, record[2 : 14]))

data_dt = records.map(lambda r : LabeledPoint(extract_label(r), extract_features_dt(r)))
first_point_dt = data_dt.first()
print "Decision Tree feature vector: " + str(first_point_dt.features)
print "Decision Tree feature vector length :" + str(len(first_point_dt.features))


#以下部分使用线性回归训练模型
from pyspark.mllib.regression import LinearRegressionWithSGD
from pyspark.mllib.tree import DecisionTree
linear_model = LinearRegressionWithSGD.train(data, iterations = 10, step = 0.1, intercept = False)
true_vs_predicted = data.map(lambda p : (p.label, linear_model.predict(p.features)))
print "Linear Model predictions " + str(true_vs_predicted.take(5))

#以下部分使用决策树训练模型
dt_model = DecisionTree.trainRegressor(data_dt, {})
preds = dt_model.predict(data_dt.map(lambda p : p.features))
actual = data.map(lambda p : p.label)
true_vs_predicted_dt = actual.zip(preds)
print "Decision Tree predictions :" + str(true_vs_predicted_dt.take(5))
print "Decision Tree depth :" + str(dt_model.depth())
print "Decision Tree number of nodes :" + str(dt_model.numNodes())

#均方误差
def squared_error(actual, pred):
    return (pred - actual) ** 2

#平均绝对误差
def abs_error(actual, pred):
    return np.abs(pred - actual)

#均方根对数误差
def squared_log_error(actual, pred):
    return (np.log(pred + 1) - np.log(actual + 1)) ** 2

#以下部分得到线性回归的三个指标
mse = true_vs_predicted.map(lambda (t, p): squared_error(t, p)).mean()
print "Linear Model - Mean Squared Error : %2.4f" % mse

mae = true_vs_predicted.map(lambda (t, p): abs_error(t, p)).mean()
print "Linear Model - Mean Absolute Error: %2.4f" % mae

rmsle = np.sqrt(true_vs_predicted.map(lambda (t, p): squared_log_error(t, p)).mean())
print "Linear Model - Root Mean Squared Log Error: %2.4f" % rmsle


#以下部分得到决策树的三个指标
mse_dt = true_vs_predicted_dt.map(lambda (t, p) : squared_error(t, p)).mean()
print "Decision Tree - Mean Squared Error : %2.4f" % mse_dt

mae_dt = true_vs_predicted_dt.map(lambda (t, p) : abs_error(t, p)).mean()
print "Decision Tree - Mean Absolute Error: %2.4f" % mae_dt

rmsle_dt = np.sqrt(true_vs_predicted_dt.map(lambda (t, p): squared_log_error(t, p)).mean())
print "Linear Model - Root Mean Squared Log Error: %2.4f" % rmsle_dt

#观察目标变量
targets = records.map(lambda r : float(r[-1])).collect()
from matplotlib import pyplot as plt
plt.hist(targets, bins=40, color='green', normed=True)
fig = plt.gcf()
fig.set_size_inches(16,10)
plt.show()

#变幻目标变量——取对数
log_targets = records.map(lambda r : np.log(float(r[-1]))).collect()
plt.hist(log_targets, bins=40, color='green', normed=True)
fig = plt.gcf()
fig.set_size_inches(16,10)
plt.show()

#开方
sqrt_targets = records.map(lambda r : np.sqrt(float(r[-1]))).collect()
plt.hist(sqrt_targets, bins=40, color='green', normed=True)
fig = plt.gcf()
fig.set_size_inches(16,10)
plt.show()

data_log = data.map(lambda lp : LabeledPoint(np.log(lp.label), lp.features))
model_log = LinearRegressionWithSGD.train(data_log, iterations=10, step=0.1)
true_vs_predicted_log = data_log.map(lambda p : (np.exp(p.label), np.exp(model_log.predict(p.features))))

mse_log = true_vs_predicted_log.map(lambda (t, p): squared_error(t, p)).mean()
print "Linear Model - Mean Squared Error : %2.4f" % mse_log

mae_log = true_vs_predicted_log.map(lambda (t, p): abs_error(t, p)).mean()
print "Linear Model - Mean Absolute Error: %2.4f" % mae_log

rmsle_log = np.sqrt(true_vs_predicted.map(lambda (t, p): squared_log_error(t, p)).mean())
print "Linear Model - Root Mean Squared Log Error: %2.4f" % rmsle_log

print "未对原数据进行对数操作时:\n" + str(true_vs_predicted.take(3)) 
print "对原数据进行对数操作时:\n" + str(true_vs_predicted_log.take(3)) 


data_dt_log = data_dt.map(lambda lp : LabeledPoint(np.log(lp.label), lp.features))
dt_model_log = DecisionTree.trainRegressor(data_dt_log, {})
preds_log = dt_model_log.predict(data_dt_log.map(lambda p : p.features))
actual_log = data_dt_log.map(lambda p: p.label)
true_vs_predicted_dt_log = actual_log.zip(preds_log).map(lambda (t, p) : (np.exp(t), np.exp(p)))

mse_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): squared_error(t, p)).mean()
print "Decision Tree - Mean Squared Error : %2.4f" % mse_log_dt

mae_log_dt = true_vs_predicted_dt_log.map(lambda (t, p): abs_error(t, p)).mean()
print "Decision Tree - Mean Absolute Error: %2.4f" % mae_log_dt

rmsle_log_dt = np.sqrt(true_vs_predicted_dt_log.map(lambda (t, p): squared_log_error(t, p)).mean())
print "Decision Tree - Root Mean Squared Log Error: %2.4f" % rmsle_log_dt

print "未对原数据进行对数操作时:\n" + str(true_vs_predicted_dt.take(3)) 
print "对原数据进行对数操作时:\n" + str(true_vs_predicted_dt_log.take(3)) 


data_with_idx = data.zipWithIndex().map(lambda (k, v) : (v, k))
test = data_with_idx.sample(False, 0.2, 42)
train = data_with_idx.subtractByKey(test)

train_data = train.map(lambda (idx, p) : p)
test_data = test.map(lambda (idx, p) : p)
train_size = train_data.count()
test_size = test_data.count()
print "训练集大小:%d" % train_size
print "测试集大小:%d" % test_size
print "总共大小:%d" % num_data
print "训练集大小 + 测试集大小:%d" %  (train_size + test_size)


data_with_idx_dt = data_dt.zipWithIndex().map(lambda (k, v) : (v, k))
test_dt = data_with_idx_dt.sample(False, 0.2, 42)
train_dt = data_with_idx_dt.subtractByKey(test_dt)
train_data_dt = train_dt.map(lambda (idx, p) : p)
test_data_dt = test_dt.map(lambda (idx, p) : p)
train_size_dt = train_data_dt.count()
test_size_dt = test_data_dt.count()
print "训练集大小:%d" % train_size_dt
print "测试集大小:%d" % test_size_dt
print "总共大小:%d" % num_data
print "训练集大小 + 测试集大小:%d" %  (train_size_dt + test_size_dt)

def evaluate(train, test, iterations, step, regParam, regType, intercept):
    model= LinearRegressionWithSGD.train(train, iterations, step, regParam=regParam, regType=regType, intercept=intercept)
    tp = test.map(lambda p : (p.label, model.predict(p.features)))
    rmsle = np.sqrt(tp.map(lambda (t, p) : squared_log_error(t, p)).mean())
    return rmsle
#迭代次数对性能的影响
params = [1, 5, 10, 20, 50, 100]
metrics = [evaluate(train_data, test_data, param, 0.01, 0.0, 'l2', False) for param in params]
#注意这里是字母L的小写l不是1
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.xlabel("iterations")
plt.ylabel("RMSLE")
plt.show()


params = [0.01, 0.025, 0.05, 0.1, 1.0]
metrics = [evaluate(train_data, test_data, 10,param, 0.0, 'l2', False) for param in params]
#注意这里是字母L的小写l不是1
#步长对性能的影响
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.xlabel("step")
plt.ylabel("RMSLE")
plt.show()


params = [0.1, 0.01, 0.1, 1.0, 5.0, 10.0, 20.0]
metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l2', False) for param in params]
#注意这里是字母L的小写l不是1
#正则化参数对性能的影响
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.xlabel("regParam")
plt.xscale('log')
plt.ylabel("RMSLE")
plt.show()

params = [0.1, 0.01, 0.1, 1, 10.0, 100.0, 1000.0]
metrics = [evaluate(train_data, test_data, 10, 0.1, param, 'l1', False) for param in params]
#注意这里是字母L的小写l不是1
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.xlabel("regParam")
plt.xscale('log')
plt.ylabel("RMSLE")
plt.title("when regType change to l1 from l2")
plt.show()


model_l1 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=1.0, regType='l1', intercept=False)
model_l1_10 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=10.0, regType='l1', intercept=False)
model_l1_100 = LinearRegressionWithSGD.train(train_data, 10, 0.1, regParam=100.0, regType='l1', intercept=False)
print "L1(1.0)权重向量中0个书目:" + str(sum(model_l1.weights.array == 0))
print "L1(10.0)权重向量中0个书目:" + str(sum(model_l1_10.weights.array == 0))
print "L1(100.0)权重向量中0个书目:" + str(sum(model_l1_100.weights.array == 0))


params = [False, True]
metrics = [evaluate(train_data, test_data, 10, 0.1, 1.0, 'l2', param) for param in params]
#注意这里是字母L的小写l不是1
print params
print metrics
plt.bar(params, metrics)
fig = plt.gcf()
plt.xlabel("intercept")
plt.ylabel("RMSLE")
plt.show()


def evaluate_dt(train, test, maxDepth, maxBins):
    model = DecisionTree.trainRegressor(train, {}, impurity='variance', maxDepth=maxDepth, maxBins=maxBins)
   # print model 
    preds = model.predict(test.map(lambda p : p.features))
    actual = test.map(lambda p : p.label)
    tp = actual.zip(preds)
    rmsle = np.sqrt(tp.map(lambda (t, p) : squared_log_error(t, p)).mean())
    return rmsle
    
params = [1, 2, 3, 4, 5, 10, 20]
metrics = [evaluate_dt(train_data_dt, test_data_dt, param, 32) for param in params]
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.title("maxDepth's influence on DecisionTree")
plt.xlabel("maxDepth")
plt.ylabel("RMSLE")
plt.show()

params = [2, 4, 8, 16, 32, 64, 100]
metrics = [evaluate_dt(train_data_dt, test_data_dt, 5, param) for param in params]
print params
print metrics
plt.plot(params, metrics)
fig = plt.gcf()
plt.title("maxBins's influence on DecisionTree")
plt.xlabel("maxBins")
plt.ylabel("RMSLE")
plt.show()





评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值