机器学习 | 朴素贝叶斯

机器学习 | 朴素贝叶斯

更多内容,关注wx公众号:数据分析这件小事儿

贝叶斯派与频率派
在参数估计上,有两个方法,MLE(最大似然估计) 和MAP(最大后验估计),分别代表了频率派和贝叶斯派。

频率派关心的是似然函数,认为用样本去计算出的概率就是真实的,而贝叶斯派关心的是后验分布,他们认为样本只是用来修正经验观点。

贝叶斯学派的思想可以概括为先验概率+数据=后验概率,即实际问题中需要得到的后验概率,可以通过先验概率和数据一起综合得到。

先验概率:指根据以往经验和分析,在实验或采样前就可以得到的概率。

后验概率:指某件事已经发生,想要计算这件事发生的原因是由某个因素引起的概率。

先验概率就是事先可估计的概率分布,而后验概率类“由果溯因”的思想。由于先验概率常常难以量化,所以这一点常常被频率派攻击,他们认为贝叶斯派假设的先验分布模型,比如正态分布,beta分布等,没有特定的依据。

贝叶斯公式
假设将训练数据分为k类,如果知道条件概率,则最优预测应最大化此条件概率,也称后验概率:
在这里插入图片描述
上式表明,对于y的预测,应使后验概率最大化,这种决策方法称为贝叶斯最优决策,由此得到的决策边界叫做贝叶斯决策边界。使用贝叶斯最优决策&

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。这个假设使得算法具有较快的训练和预测速度,并且在处理大规模数据集时表现良好。 下面我将用图解的方式详细介绍朴素贝叶斯算法的原理和步骤。 首先,我们需要准备一个分类任务的数据集。假设我们要构建一个垃圾邮件分类器,数据集包含了一些已经标记好的邮件样本,每个邮件样本都有一些特征(如邮件内容、发件人等)和对应的标签(垃圾邮件/非垃圾邮件)。 第一步是计算先验概率。先验概率指的是在没有任何特征信息的情况下,某个样本属于某个类别的概率。在我们的例子中,就是计算垃圾邮件和非垃圾邮件出现的概率。 第二步是计算条件概率。条件概率指的是在已知某个特征条件下,某个样本属于某个类别的概率。对于朴素贝叶斯算法来说,我们假设所有特征之间相互独立,因此可以将条件概率拆分为各个特征的概率乘积。我们需要计算每个特征在每个类别下的概率。 第三步是应用贝叶斯定理。贝叶斯定理可以根据已知的特征计算某个样本属于某个类别的后验概率。后验概率越大,就说明该样本属于该类别的可能性越大。 最后,我们可以根据后验概率进行分类预测。选择具有最大后验概率的类别作为预测结果。 总结一下,朴素贝叶斯算法通过计算先验概率、条件概率和应用贝叶斯定理,实现了对样本的分类预测。它的优势在于简单、快速,并且在一些特定的数据集上表现出色。然而,它的假设可能不符合实际情况,所以在实际应用中需要考虑和验证数据的特性和假设的合理性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值