LeetBook——链表——双指针技巧——环形链表(2)

该博客介绍了如何通过快慢指针法检测和找到环形链表的起始入环节点。在给定的链表中,如果存在环,算法会返回环的起始节点;若无环,则返回null。示例展示了不同情况下的链表环,包括环的位置和不存在环的情况。解决方案在O(n)时间复杂度和O(1)空间复杂度下实现。
摘要由CSDN通过智能技术生成

环形链表(2)
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。

说明:不允许修改给定的链表。

进阶:

你是否可以使用 O(1) 空间解决此题?

示例 1:
在这里插入图片描述

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
在这里插入图片描述

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
在这里插入图片描述

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示:

链表中节点的数目范围在范围 [0, 104] 内
-105 <= Node.val <= 105
pos 的值为 -1 或者链表中的一个有效索引

在这里插入图片描述
slow走的距离 : D + S1

fast走的距离 : D+ S1+ n(S1+S2) 多走n圈

fast速度是slow的二倍

2D + 2S1 = D+ S1+ n(S1+S2) (1)
D = (n - 1)(S1 + S2) + S2 (2)

首次相遇并证明存在环后,将slow置于head,再次相遇的地方就是入环点

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public ListNode detectCycle(ListNode head) {
        ListNode fast = head;
        ListNode slow = head;

         //快慢指针相遇
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
            //第一次相遇退出循环
            if (slow == fast) break;
        }
        //判断是否有环 
        if(fast==null||fast.next==null)return null; //无环返回null

        //有环则将fast移动至head并移动S2距离,再次相遇点就是入环点
        fast=head;
        while(fast!=slow){
            slow=slow.next;
            fast=fast.next;
        }
       return fast;

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值