216.组合总和III
题目描述:
找出所有相加之和为 n
的 k
个数的组合,且满足下列条件:
- 只使用数字1到9
- 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。
示例一:
输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。
示例二:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。
提示:
输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。
解题思路:
- 关键词提取:k个数、和为n、数字只能用一次、数字1-9、去重、任意顺序
- 回溯解法:
- 层数k,在达到k层时,将结果保存
- 选值范围[1,9],由for循环做遍历寻值
- 每个数字(每个值)只能用一次,需要用index去记录起始位置,每层从起始位置开始寻值
- 累加的值需要传递,但是换个思路,可以用累减,那么只需要每次递归的时候,更新n的值就可以
代码如下:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
// 递归函数
void backtracking(int k, int n, int startIndex) {
// 递归终止条件
if(path.size() == k) {
// 符合条件,保存结果
if(n == 0) {
result.push_back(path);
}
return;
}
// 横向遍历取值
for(int i = startIndex; i <= 9; i++) {
// 当前值小于或等于n,可以取值
if(i <= n) {
// 保存当前值
path.push_back(i);
// 递归,传递的n值,需要减去当前值
backtracking(k, n - i, i + 1);
// 回溯
path.pop_back();
}
// 超过n,就结束寻值,后面的值都会超过n
else {
break;
}
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear();
path.clear();
backtracking(k, n, 1);
return result;
}
};
总结:
-
二刷,采用回溯算法的模板去做,逻辑很清晰。
- 解题:组合类,元素不能重复,任意顺序。满足回溯法的前提条件。
- 模板:
1、确认递归函数
2、确认递归终止条件
3、确认结果集的存数逻辑
4、确认单层遍历的起始位置
5、确认单次结果取数逻辑
6、确认递归函数的起始状态
7、确认单次递归的回溯逻辑
-
代码随想录讲解的很详细,有兴趣的小伙伴可以去研究一下。
- 文字讲解版:https://programmercarl.com/0216.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8CIII.html#%E6%80%9D%E8%B7%AF
- 建议:假如按照这个框架执行,比较吃力的话,还是要画一个图出来,按照图去填充代码框架,会更好理解一些。
- 在二叉树的递归求子树的累加和时,carl哥有提到这个思路,就是用减法取代加法。
- 目标值是一个和,在每次递归中做累加,还需要再去传递一个sum值存储累加值。最终目标值是sum,储存结果集的时候,判断条件是sum==target。
sum=1+2+3+…+n - 目标值是一个和,在每次递归中做累减,只需要每次更新目标值就可以。最终目标值是0,储存结果集的时候,判断条件是0==target-sum。
?=target-1-2-3-…-n
- 目标值是一个和,在每次递归中做累加,还需要再去传递一个sum值存储累加值。最终目标值是sum,储存结果集的时候,判断条件是sum==target。
17.电话号码的字母组合
题目描述:
给定一个仅包含数字 2-9
的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
示例一:
输入:digits = "23"
输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]
示例二:
输入:digits = "2"
输出:["a","b","c"]
提示:
0 <= digits.length <= 4
digits[i] 是范围 ['2', '9'] 的一个数字。
解题思路:
- 关键词提取:‘2’-'9’字符串、字母组合、任意顺序、字符串映射
- 回溯解法:
- 层数len是字符串的长度,一共有多少个字符"23"
- 在达到len层时,将结果保存
- 需要将字符串中"23"的每一位字符(数字)‘2’、'3’单独拷贝下来,映射为“abc”这样的字符串,拷贝下来,做遍历
- 选值范围[a,c]或[d,f]…[wxyz],由字符串的每位字符决定是哪个选值范围,如’2’对应[a,c],'3’对应[d,f]
- 由for循环在上述选值范围中做遍历寻值[a,c]
- 对于字符串的每一位字符(数字)“23”,采用index参数保存当前的位数,每层递归,index参数移动至下一位,index+1。如index初始化是0,对应’2’,index+1=1,对应’3’
代码如下:
class Solution {
private:
const string letterMap [10] = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
vector<string> result;
string path;
public:
// 递归
void backtracking(string digits, int index) {
// 终止条件:层数达到字符串的长度
if(index == digits.size()) {
// 保存结果集
result.push_back(path);
return;
}
// 将当前层数(对应字符),转换为指定的数组下标
int digit = digits[index] - '0';
// 将二维数组中,指定下标的字符串拷贝出来
string letter= letterMap[digit];
// 对拷贝的字符串做遍历
for(int i = 0; i < letter.size(); i++) {
// 保存当前字符
path.push_back(letter[i]);
// 递归
backtracking(digits, index + 1);
// 回溯
path.pop_back();
}
}
vector<string> letterCombinations(string digits) {
if(digits.size() == 0) {
return result;
}
backtracking(digits, 0);
return result;
}
};
总结:
-
三刷,采用回溯算法的模板去做,逻辑很清晰。
- 解题:组合类,元素不能重复,任意顺序。满足回溯法的前提条件。
- 模板:
1、确认递归函数
2、确认递归终止条件
3、确认结果集的存数逻辑
4、确认单层遍历的起始位置
5、确认单次结果取数逻辑
6、确认递归函数的起始状态
7、确认单次递归的回溯逻辑
-
代码随想录讲解的很详细,有兴趣的小伙伴可以去研究一下。
- 文字讲解:https://programmercarl.com/0017.%E7%94%B5%E8%AF%9D%E5%8F%B7%E7%A0%81%E7%9A%84%E5%AD%97%E6%AF%8D%E7%BB%84%E5%90%88.html#%E6%80%9D%E8%B7%AF
- 不一样的地方是,在分析深度遍历的时候,我没有将字符串写出来,所以在分析过程中会比较模糊,需要做多次的调试与修改。
- 建议还是学一下将回溯法题目的解题思路画成图,有利于自己的理解以及代码的编写,可以减少调试修改的次数。特别是对于深度遍历的结束条件以及横向遍历的起始条件。