腾讯ima知识库使用指南

大家好,我是苍何。

我大概看了下,群里聊的最多的话题就是怎么用 AI 构建个人知识库了。

讲真的,自从 AI 起来后,我也一刻不停的在倒腾知识库,去年我尝试用 Notion 加微信助手来做个人知识库。

所有我看到的有用的知识我都通过微信助手发到 Notion,无论是微信聊天记录还是公众号文章,甚至小红书笔记,只要是我觉得有用的统统都会放到 Notion 知识库。

但是,用了一年后我发现一个问题,大部分被我放进知识库的东西,都躺在那儿吃灰。

知识库并不能很好的为我所用,比如我想找「如何用好提示词」,出来的却是一堆的文章或者聊天记录。

他还是需要我自己去总结,自己再重新去看文章。这就很原始,太慢了。

但自从我发现腾讯的 ima. copilot 后,我的知识管理,彻底起飞。

腾讯 ima. copilot 是腾讯旗下基于自研的混元大模型技术推出的 AI 智能工作台,主要面向学习、办公等场景。

目前 ima 已接入 DeepSeek-R1 模型,可以自建和共享知识库,将收集的优质内容(如网页、文档、公众号文章等)结构化存储,并基于此进行定制化问答。

我现在可以一股脑的将我的所有知识交给 ima. copilot,然后直接基于知识库对话,迅速查找我要的知识。

这其实完成了知识管理的一个闭环:输入+输出

比如我将数十篇 DeepSeek 相关的文档丢给我在 ima 上创建的知识库

然后我现在突然想了解下「DeepSeek有哪些使用技巧」,要是以前,我得翻阅各种文档去提炼吧?

现在只需要对话框轻轻输入:“DeepSeek 有哪些使用技巧?”

他就会自动取我知识库的文档里面检索,然后直接给出总结答案:

真的,这种提炼总结AI 太会了,也不会有什么幻觉,毕竟都是基于你投喂的数据来回答。

这还是基于腾讯自己的混元模型,甚至现在还可以免费使用 DeepSeek R1 来直接提问,效果相当炸裂。

比如我现在想看下北大新出的《DeepSeek提示词工程和落地场景》这里面都有哪些核心亮点。

要换做以前,找个亮点不得通读全文才能做到啊?而现在,只需要一个简单的 prompt:“帮我提炼北大的 DeepSeek 提示词工程和落地场景这篇文档的亮点,并以 markdown 格式输出”

噼里啪啦几下子,就给我总结完了,这里让他以 markdown 格式输出后,甚至我可以直接将他导入到思维导图软件中。

方法也简单的爆,复制他产生的内容。

然后本地新建一个 txt 文档,把这个内容贴进去,玩了之后将. txt 后缀改成. md,一个 md 文档就做好了。

接下来打开思维导图软件,点击软件,选择导入,选择 markdown,就 OK 了。

(快速做思维导图的方法其实都差不多)你就可以看到下面的思维导图。

太牛逼了,这才是效率啊。

这样,我收藏的内容,他不再躺在那里吃灰,所有东西都能为我所用,这才是知识库最大的意义。

你以为这就完了?最牛逼的是,这东西可以直接在微信上使用,无论是公众号文章,还是微信聊天中的文件,通通都可以丢给他。

比如我可以选择微信聊天中的文件,直接导入:

导入到自己的知识库之后,就可以对其进行提问了:

现在微信端的输入都是以小程序作为载体,但还不支持微信聊天记录的传入,还不支持自动打标签,自动分类。

我们每天在微信产生了那么多的聊天数据,要是这些都能通通给到知识库,然后做提炼。

你可以想象一下,这个事情会有多么的刺激。

微信生态最牛逼的地方就在于联系,那种基于人和人之间的联系,或许是未来,我们活在这个世界上最珍贵的。

属于我们个人的数字资产。

如果都能最后做成知识库,你可以想象一下,未来的哪一天,你想了解自己再一年前见了什么人,说了什么话,交了哪个朋友。

你只需要轻轻的来一句:hi,Siri,

哦,不。

是,hi,ima,我在 3 月 8 日女神节这天给谁发祝福啦。

你就可以在 10 年后查到今年的女神节,你给哪个女神发红包发祝福了。

是不是挺有意思?

我很兴奋。

我希望我能见证这正在发生的一切,我也希望自己能记录这一切。

这或许是创作本身最大的价值。

感谢你喜欢我的文章,我们下期见。

### 实现 DeepSeek 创建个人知识库 为了在本地环境中成功创建并运行基于 DeepSeek 的个人知识库,需遵循一系列配置与操作流程。 #### 安装依赖环境 首先,确保 Python 版本兼容性至关重要。推荐使用 Conda 虚拟环境来管理项目所需的软件包版本。具体命令如下所示: ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 这一步骤能够建立一个名为 `deepseek` 的新虚拟环境,并指定 Python 3.10 作为解释器版本[^2]。 #### 配置 DeepSeek 和 Dify 平台集成 完成上述准备工作之后,下一步就是将 DeepSeek 整合至支持私有化部署的 Dify 开发平台之中。这种做法不仅有助于保护敏感资料的安全性和隐私权,同时也允许开发者利用更加强大且灵活的功能集去定制专属的人工智能应用程序[^1]。 #### 添加本地知识库的具体方法 对于希望进一步扩展应用能力的企业或个人而言,在已有的基础上加入自定义的知识源是一项非常有价值的工作。通常情况下,此过程涉及以下几个方面: - **准备结构化的数据文件**:可以是以 CSV 或 JSON 格式的文档集合; - **编写适配接口程序**:用于解析外部输入的数据格式并与内部存储机制相匹配; - **执行索引更新动作**:每当新增加一批条目时都需要重新计算其对应的检索向量; 请注意,实际编码细节会依据所选技术栈的不同而有所差异。然而,总体思路保持一致——即始终围绕着提高系统的智能化水平以及增强用户体验展开设计思考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员苍何

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值