RCNN

在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
Training的过程:

  1. 对训练集中所有的图片,用selective search提取出各图片对应的2000个proposal,并保存。(图片路径+bounding box信息)
  2. 对每张图片,根据图片中bounding box的ground truth信息,给该图片的2000个proposal赋类标签,并保存。(这2000个proposal,如果跟ground truth中的proposal的IoU值超过了阈值,则把ground truth中的proposal对应的类标签赋给原始产生的这个proposal,其余的proposal都标为background)
  3. 根据2中得到的文件,每次随机取batch,32 positive windows and 96 background windows,来训练一个在ImageNet上训好的模型,每一个proposal输入CNN,对应的类标签,来训练这201类的classification网络,训练好后,对所有的proposal,forward一遍来得到fc7 feature,保存最终的fc7特征及对应的proposal信息到文件中
  4. 训练SVM分类器。对某一个特定的类,把跟属于这个类的ground truth的bounding box的IoU大于阈值的原始提取的proposal标为正样本,其余标为负样本,得到新的一个文件(加上之前得到的fc7特征信息)。用这个文件去训练这一个类的SVM。同样的方法,循环训好其他类别的分类器。
  5. 用CNN得到的pool5的特征和bounding box的ground truth来训练bounding box regression,只对那些跟ground truth的IoU超过某个阈值的proposal进行训练,其余的不参与。
  6. 在这里插入图片描述在这里插入图片描述在这里插入图片描述
  7. Test的过程:
  8. 对给定的一张图片,通过Selective Search得到2000个Proposals
  9. 每一个Proposal都经过已经训练好的CNN网络, 得到fc7层的features,4096-dimension,即2000*4096
  10. 用SVM分类器(4096K)得到相应的score,即2000K
  11. 用CNN中pool5的特征,利用已经训练好的权值,得到bounding box的修正值,原先的proposal经过修正得到新的proposal的位置
  12. 对每一类别的scores,进行non-maximum suppression。具体来讲,对于2000*K中的每一列,进行nms。对于特定的这一列(这一类),选取值最大的对应的proposal,计算其他proposal跟此proposal的IOU,剔除那些重合很多的proposal。再从剩下的proposal里选取值最大的,然后再进行剔除,如此反复进行,直到没有剩下的proposal。K列(K类)都进行这样的操作,即可得到最终的bounding box和每一个bounding box对应的类别及其score值。
RCNN(Region-based Convolutional Neural Network)是一种目标检测算法,而Mask RCNN是在RCNN的基础上添加了一个预测分割mask的分支。Mask RCNN相比于RCNN具有更好的泛化适应能力,可以与多种RCNN框架结合,并表现出色。以及相关的代码链接。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Mask-RCNN技术解析](https://blog.csdn.net/linolzhang/article/details/71774168)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Mask R-CNN原理详细解读](https://blog.csdn.net/qq_37392244/article/details/88844681)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Mask RCNN 算法笔记](https://blog.csdn.net/u014380165/article/details/81878644)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值