深度学习
啊哟喂gzxb
这个作者很懒,什么都没留下…
展开
-
tf.nn.separable_conv2d
tf.nn.separable_conv2d(input,depthwise_filter,pointwise_filter,strides,padding,rate=None,name=None,data_format=None)原创 2019-09-18 16:04:35 · 273 阅读 · 0 评论 -
统计xml不同种类样本个数
import xml.etree.ElementTree as ETimport osTRAIN_STATISTICS = { 'none': [0, 0], '1': [0, 0], '2': [0, 0]}all_filepath = []for dirpath, dirname, filepath in os.walk(r"C:\Users\ADMIN\...原创 2019-08-09 08:52:35 · 561 阅读 · 0 评论 -
tf.nn.softmax_cross_entropy_with_logits
import tensorflow as tflogits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])y=tf.nn.softmax(logits)y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])cross_entropy = -tf.reduce_...原创 2019-08-08 16:58:51 · 128 阅读 · 0 评论 -
from collections import namedtuple
from collections import namedtuplewebsites = [(‘Sohu’, ‘http://www.google.com/’, u’张朝阳’),(‘Sina’, ‘http://www.sina.com.cn/’, u’王志东’),(‘163’, ‘http://www.163.com/’, u’丁磊’)]Website = namedtuple(‘W...原创 2019-08-06 13:36:18 · 240 阅读 · 0 评论 -
Python 字符串前面加u,r,b的含义
1、字符串前加 u例:u"我是含有中文字符组成的字符串。"作用:后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,防止因为源码储存格式问题,导致再次使用时出现乱码。2、字符串前加 r例:r"\n\n\n\n” # 表示一个普通生字符串 \n\n\n\n,而不表示换行了。作用:去掉反斜杠的转义机制。(特殊字符:即那些,反斜杠加上对应字母,表示对应的特殊含义的,比...原创 2019-08-06 12:06:39 · 113 阅读 · 0 评论 -
注解说明
# 闭包是一种特殊情况,如果外函数在结束的时候发现有自己的临时变量将来会在内部函数中用到,就把这个临时变量绑定给了内部函数,然后自己再结束# 1def outer(a): b=10 def inner(): print(a+b) return innerdemo = outer(5)demo()demo2 = outer(7)demo2()#...原创 2019-08-05 21:31:52 · 107 阅读 · 0 评论 -
voc_to_tfrecord
tf_convert_data_mainimport tensorflow as tffrom datasets import pascalvoc_to_tfrecordsFLAGS = tf.app.flags.FLAGStf.app.flags.DEFINE_string( 'dataset_name', 'pascalvoc', 'The name of the...原创 2019-08-05 09:03:02 · 369 阅读 · 2 评论 -
标注工具xml转txt文件保存
import osimport xml.dom.minidomdef transfrom_xlm_to_txt(file_dirpath, savepath): xml_list = [] for dirpath, dirname, filepath in os.walk(file_dirpath): for one_filepath in filepath:...原创 2019-07-26 20:24:21 · 891 阅读 · 2 评论 -
tf.app.flags.
import tensorflow as tftf.app.flags.DEFINE_float( 'select_threshold', 0.01, 'Selection threshold.') #key , value , introducetf.app.flags.DEFINE_integer( 'select_top_k', 400, 'Select top-k ...原创 2019-08-04 15:53:09 · 121 阅读 · 0 评论 -
alexnet
原创 2019-07-22 20:53:55 · 70 阅读 · 0 评论 -
resnet
原创 2019-07-17 19:50:15 · 77 阅读 · 0 评论 -
NMS代码实现
def iou(the_first_score_location, the_rest_score_location): if the_first_score_location[0] > the_rest_score_location[0] and the_first_score_location[0] > \ the_rest_score_locatio...原创 2019-07-29 18:53:18 · 376 阅读 · 0 评论 -
ssd
原创 2019-08-09 14:10:28 · 114 阅读 · 0 评论 -
ssd代码学习
每次运行时候记得删除这个保存的文件,如果用不同代码运行,继续保存在这个文件下,会导致运行错误原创 2019-08-11 18:25:44 · 218 阅读 · 0 评论 -
深度学习出现NAN的情况
1.首先检查的原因是训练集中出现脏数据,脏数据的出现导致我的logits计算出了0,0传给 log(x|x=0) 导致为∞, 即nan。之所以会这样,是因为我的实验是实际业务上的真实数据。所以需要一条一条检测数据是否为脏数据。2.其次才是使用如下解决方案(1)、数据归一化(减均值,除方差,或者加入normalization,例如BN、L2 norm等);(2)、更换参数初始化方法(对于CNN...原创 2019-09-12 13:04:21 · 1723 阅读 · 0 评论 -
处理样本不均衡的方法
原创 2019-09-11 15:15:04 · 176 阅读 · 0 评论 -
tf.map_fn
tf.map_fn(fn=lambda x:tf.nn.conv2d(x,kernel,stride,padding='same'),elems=batch,dtype=tf.float32)对batch中每一个元素进行卷积操作原创 2019-09-10 20:30:16 · 212 阅读 · 0 评论 -
slim.arg_scope()
import tensorflow as tfslim =tf.contrib.slim@slim.add_arg_scopedef fun1(a=0,b=0):return (a+b)with slim.arg_scope([fun1],a=10):x=fun1(b=30)print(x)原创 2019-09-10 14:06:20 · 142 阅读 · 0 评论 -
计算量
卷积层全连接层原创 2019-09-10 12:35:26 · 185 阅读 · 0 评论 -
YOLO
原创 2019-08-22 16:21:18 · 118 阅读 · 0 评论 -
ssd网络流程
原创 2019-08-16 19:33:33 · 418 阅读 · 0 评论 -
排序优化方法
1.冒泡法import numpy as npnp.random.seed(29)a = np.arange(50)np.random.shuffle(a)list_sort = a.tolist()print(list_sort)def bubbling_sort(list_): length = len(list_) while True: F...原创 2019-08-21 17:37:20 · 177 阅读 · 0 评论 -
Faster_rcnn
AnchorTargetCreator : 负责在训练RPN的时候,从上万个anchor中选择一些(比如256)进行训练,以使得正负样本比例大概是1:1. 同时给出训练的位置参数目标。 即返回gt_rpn_loc和gt_rpn_label。ProposalCreator: 在RPN中,从上万个anchor中,选择一定数目(2000或者300),调整大小和位置,生成RoIs,用以Fast R-CN...原创 2019-08-21 10:10:40 · 119 阅读 · 0 评论 -
深度学习学习率的研究
一.是通过人为经验进行设定,如到达多少轮后,设定具体的学习率为多少分段常数衰减分段常数衰减是在事先定义好的训练次数区间上,设置不同的学习率常数。刚开始学习率大一些,之后越来越小,区间的设置需要根据样本量调整,一般样本量越大区间间隔应该越小。tf.train.piecewise_constant(x,boundaries,values,name=None)x: 标量,指代训练次数...原创 2019-08-12 09:35:21 · 377 阅读 · 0 评论 -
膨胀卷积
1.膨胀卷积是对卷积核进行0填充。2.膨胀后的卷积核的大小:(1)设原始卷积核的大小是3*3(2)设膨胀率为2(3)则膨胀后的卷积核的大小为:dilation_rate*(kernel_size - 1)+1结果就是 2*(3-1)+1=5,膨胀后的卷积核大小是5*53.默认的dilation_rate=1....原创 2019-08-15 15:24:41 · 809 阅读 · 0 评论 -
目标检测用到的函数
tf.where()import tensorflow as tfimport numpy as npa = np.array([[1,1,1,1,0,0,0], [1,1,1,1,0,0,0]])aa = np.array([[1,1,1,1,1,0,0], [1,1,0,1,0,0,0]])d = tf.equal(a,aa...原创 2019-07-23 17:19:13 · 174 阅读 · 0 评论 -
tensorflow学习(4):Googlenet
原创 2019-06-26 20:48:46 · 112 阅读 · 0 评论 -
深度学习(5):迁移学习
大数据集: 1.数据类型相似:假设预训练的模型用的是RESNET50的网络结构,我们用的网络结构也要是RESNET50,把预训练的RESNET50的最后全连接的权重值去除,保留卷积层的权重值,把这些变为constant,下面接上自己建立的全连接层。...原创 2019-07-01 21:55:39 · 170 阅读 · 0 评论 -
tensorflow学习(3):保存和读取文件
保存import tensorflow as tffrom sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import OneHotEncoderimport numpy as npimport mathn...原创 2019-06-22 12:58:20 · 306 阅读 · 0 评论 -
tensorboard 学习
保存准确率tf.summary.scalar('accuracy',acc) #生成准确率标量图 merge_summary = tf.summary.merge_all() train_writer = tf.summary.FileWriter(dir,sess.graph)#定义一个写入summary的目标文件,dir为写入文件地址 for...原创 2019-06-22 10:56:27 · 164 阅读 · 0 评论 -
NMS
就像上面的图片一样,定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制的方法是:先假设有6个矩形框,根据分类器的类别分类概率做排序,假设从小到大属于车辆的概率 分别为A、B、C、D、E、F。(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们...转载 2019-07-03 18:21:41 · 109 阅读 · 0 评论 -
图片二值化
one_link = cv2.imread(i) one_image = cv2.cvtColor(one_link,cv2.COLOR_BGR2GRAY) ret, threshold = cv2.threshold(one_image, 0, 255, cv2.THRESH_TRIANGLE) one_image_1 = np.array(threshold) x.append(on...原创 2019-06-25 08:29:44 · 433 阅读 · 0 评论 -
tensorflow学习(2):编写一个自己的batch的程序
def batch(x_train,y_train,batch_size,shuffle=None): list_shuffle = np.arange(x_train.shape[0]) list_notshuffle = np.arange(x_train.shape[0]) np.random.shuffle(list_shuffle) if shuffle ...原创 2019-06-21 03:34:03 · 574 阅读 · 0 评论 -
目标检测学习(1):目标检测框绘制
(w, h), baseline = cv2.getTextSize(text, fontFace, fontScale, thickness)text:需要输入的文本fontFace:字体种类fontScale;字体尺寸thickness:字体粗细返回值baseline:baseLine即下面红线与蓝线直接的距离cv2.rectangle(img, pt1, pt2, color,...原创 2019-06-20 16:59:51 · 4996 阅读 · 0 评论 -
池化层和卷积层
池化层“VALID” 模式,在剩余行列数小于池化窗口大小时,将最右边和最下面的列或行抛弃,只保留有效值;“SAME” 模式则是在剩余行列数不足时补充0来满足池化窗口的大小,保持窗口被池化区域相同;所以输出尺寸不是池化窗口的整数倍时,same模式的输出要比valid的大。...原创 2019-06-19 20:05:08 · 449 阅读 · 0 评论 -
tensorflow学习(1):GPU设置
gpu_options GPU相关参数tf.Session(self, target='', graph=None, config=tf.ConfigProto(log_device_placement=True, allow_soft_placement=True, ...原创 2019-06-19 13:22:42 · 654 阅读 · 0 评论 -
随机裁剪、翻转、对比度设置、亮度设置
1、随机裁剪import tensorflow as tfimport cv2import matplotlib.pyplot as plt#用来正常显示中文plt.rcParams[“font.sans-serif”]=[“SimHei”]if name == “main”:img = cv2.imread(“img/img.jpg”)#将图片进行随机裁剪为280×280cro...转载 2019-06-14 12:15:15 · 868 阅读 · 0 评论 -
tensorflow中卷积方式SAME和VALID特征图大小计算
卷积方式SAME后特征图大小计算卷积方式: SAME(卷积后的特征图大小跟卷积核大小无关,只跟卷积所用的步长有关,当卷积步长是1时,卷积前后特征图大小保持不变)输入特征图大小:W×H卷积核大小: k×k卷积步长: s×s输出特征图大小: W1×H1W1 = math.ceil(W / s)H1 = math.ceil(H / s)其中math.ceil()是向上取整卷积方式是SA...原创 2019-06-27 09:17:01 · 317 阅读 · 0 评论 -
vgg16详细过程
1、输入224x224x3的图片,经64个3x3的卷积核作两次卷积+ReLU,卷积后的尺寸变为224x224x642、作max pooling(最大化池化),池化单元尺寸为2x2(效果为图像尺寸减半),池化后的尺寸变为112x112x643、经128个3x3的卷积核作两次卷积+ReLU,尺寸变为112x112x1284、作2x2的max pooling池化,尺寸变为56x56x1285、经...转载 2019-06-24 11:18:53 · 7113 阅读 · 5 评论 -
RCNN
训练阶段1.使用 selective search方法提取大约2k个 region proposal(P框) ,再warp缩放到固定尺寸(227 x 227);2.(1).imgnet上预训练:特征提取:CNN 从每个region proposal 中提取一个4096维的特征(Alexnet,5层conv,2层fc),输出为2000 x 4096;类别分类:使用SVM对4096维的特征进行...原创 2019-07-20 12:13:07 · 126 阅读 · 0 评论