机械学习
啊哟喂gzxb
这个作者很懒,什么都没留下…
展开
-
python迭代器
class diedaiqi(object): def __init__(self,len): self.first = 0 self.sec = 1 self._len = len def __next__(self): if self._len == 0: raise StopIterat...原创 2019-10-15 23:23:35 · 167 阅读 · 0 评论 -
numpy学习:reshape和resize
.reshape 与 .resizereshape:有返回值,所谓有返回值,即不对原始多维数组进行修改;resize:无返回值,所谓有返回值,即会对原始多维数组进行修改;原创 2019-06-20 22:02:02 · 2746 阅读 · 0 评论 -
最小二乘推导
原创 2019-07-03 18:23:55 · 105 阅读 · 0 评论 -
线性回归
一:介绍定义:线性回归在假设特证满足线性关系,根据给定的训练数据训练一个模型,并用此模型进行预测。为了了解这个定义,我们先举个简单的例子;我们假设一个线性方程 Y=2x+1, x变量为商品的大小,y代表为销售量;当月份x =5时,我们就能根据线性模型预测出 y =11销量;对于上面的简单的例子来说,我们可以粗略把 y =2x+1看到回归的模型;对于给予的每个商品大小都能预测出销量;当然这个模型怎...转载 2019-07-04 10:17:03 · 315 阅读 · 0 评论 -
将数据归一化到任意区间范围的方法
将数据归一化到[a,b]区间范围的方法:(1)首先找到样本数据Y的最小值Min及最大值Max(2)计算系数为:k=(b-a)/(Max-Min)(3)得到归一化到[a,b]区间的数据:norY=a+k(Y-Min)...原创 2019-07-10 09:49:19 · 2161 阅读 · 0 评论 -
为什么损失函数多用交叉熵entropy来计算
我们知道对于回归问题一般采用均方差来计算损失,这是因为回归输出的是一个实数,这样来计算一个batch中预测值与实际的均方差是自然而然的选择的,而且导数非常简单(神经网络参数的更新依据就是梯度也就是偏导),这里不再推导均方差的偏导。 但对于分类问题,输出的是一个n维的向量,向量的每个值是对应分类的概率,概率最大的就是预测的分类结果。样本的标签值也是一个概率分布,表情衡量两个概率分布之间的距离当然...转载 2019-07-04 18:15:00 · 215 阅读 · 0 评论 -
各种优化器整理
梯度下降批量梯度下降2.随机梯度下降3.小批量梯度下降牛顿法m是梯度值v是学习率Momentum(动量法)Nesterov Momentun(牛顿动量法)Adagrad(Adaptive Gradient)diag是累加RMSpropAdadeltaAdam...原创 2019-07-05 14:21:42 · 269 阅读 · 0 评论 -
机器学习整理
解决过拟合机器学习:1、线性回归换强学习能力的算法:SVM2、多项式扩展3、采用集成学习Boosting,做一个提升学习的操作深度学习:1、加深网络结构解决过拟合机械学习:1、加入正则化项、减枝2、采用集成学习Bagging3、增加数据集样本数目、样本增强深度学习:1、增加数据集样本数目、样本增强2、BN:批归一化3、Pooling:池化...原创 2019-07-05 14:47:37 · 187 阅读 · 0 评论 -
kdtree 计算数据与样本间的相似度
#特征值需要哑编码import numpy as npfrom sklearn.neighbors import KDTreeX = np.array([[0,1,1], [0,1,0], [0,0,0], [1,1,1]])tree = KDTree(X, leaf_size=2)dist, ind ...原创 2019-07-11 17:23:57 · 359 阅读 · 0 评论 -
np.pad
import numpy as nparray = np.array([[1,1,1], [2,2,2]])c = np.pad(array,((0,0),(1,1)),"constant",constant_values=5)print(c)![在这里插入图片描述](https://img-blog.csdnimg.cn/201907111826462...原创 2019-07-11 18:27:26 · 116 阅读 · 0 评论 -
opencv
HSV(H色度 S饱和度 V明度)色彩空间HSV基本颜色分量范围HLS(H色度 L亮度 S饱和度)YUV(Y明亮度 U色度 V饱和度)cv2.bitwise_not()cv2.bitwise_and()cv2.bitwise_or()cv2.bitwise_xor()cv2.addWeighted(src1=图片1,alpha=图片1权重,src2=图片2,beta=图片2权重)...原创 2019-07-11 20:51:09 · 199 阅读 · 0 评论 -
sklearn.preprocessing里的Normalizer,StandardScaler,MinMaxScaler
Normalizer正则化StandardScaler(标准化)z = (x - u) / sMinMaxScaler(区间缩放)(X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))原创 2019-07-24 21:21:13 · 932 阅读 · 0 评论 -
tensorflow和numpy
在tensorflow中sess.run后输出的是numpy a= np.array([1,2,3]) b = np.array([1,0,3]) c = np.equal(a,b) d= c.astype(np.int32) print(c) print(d) [ True False True] [1 0 1] 通过astype可以更改numpy格式...原创 2019-08-07 12:08:25 · 576 阅读 · 0 评论 -
单标签多分类
C1,C2,C3,C4为5种类别,f1,f2,f3,f4,f5为5种分类器。分别把5种类别用5种分类器表示(+1,-1)比如f1(J将C2看作正例,C1,C3,C4看作负例),测试样本也用这5种分类器表示,计算它与C1,C2,C3,C4的距离,距离最近的就属于这一类别。Binary Relevance...原创 2019-06-10 19:07:51 · 1268 阅读 · 1 评论 -
聚类
原创 2019-06-08 15:59:58 · 130 阅读 · 0 评论 -
逻辑回归整理
随机梯度下降的逻辑回归代码import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisld = load_iris()x_data = ld.datay_target = ld.targety_train = y_target[y_target != 2]a = []for i, j in ...原创 2019-06-03 15:10:40 · 212 阅读 · 0 评论 -
softmax整理
softmax原理如何使用softmax进行分类每一类y都对应一组θ值(行),形成一个关于θ的矩阵,代入x值,比较概率,概率大的就属于这一类转载 2019-06-03 15:10:02 · 116 阅读 · 0 评论 -
KMeans的伪代码
-a. 简单实现:Input:训练数据X、簇数目K、训练数据样本数目m、最大的更新次数max_iterOutput: 最终的簇中心centers# 1. 随机产生K个样本作为簇中心点centers = X[:K]# 2. 循环更新num_iter = 0while num_iter < max_iter:num_iter += 1# 获取所有样本的簇的隶属关系center...原创 2019-08-12 14:03:32 · 2226 阅读 · 0 评论 -
Adaboost
原创 2019-06-03 15:11:13 · 131 阅读 · 0 评论 -
交叉验证
注意要转换为numpy数组形式(np.asarray)原创 2019-06-03 15:09:52 · 147 阅读 · 0 评论 -
机器学习常见评价指标:AUC、Precision、Recall、F-measure、R方
AUCTruePositiveRate=真正例(真正例+假负例)FalsePositiveRate=假正例(假正例+真负例)“True Positive Rate”作为纵轴,以“False Positive Rate”作为横轴,画出ROC曲线,ROC曲线下的面积,即为AUC的值Precision真正例/(真正例+假正例)Recall真正例/(真正例+假负例)F-measure(2...原创 2019-06-03 15:09:46 · 864 阅读 · 0 评论 -
支持向量机(SVM)
原创 2019-06-05 15:33:49 · 338 阅读 · 0 评论 -
Bagging和Boosting整理
Bagging1.随机森林:两个随机:a.对于每个子模型(决策树),用于训练子模型的数据是从原始数据中有放回的随机抽样产生的。b.在每个子决策树构建的过程,对于每个分割点分割属性选择都是从所有的特征属性中随机选择K个特征属性,然后再从这K个特征属性中选择最优的作为当前节点的分割属性。2.Bagging解决过拟合:a.期望通过多模型的融合,让模型的泛化能力更强,模型更加稳定。b.减少模型方差...原创 2019-06-03 15:09:38 · 207 阅读 · 0 评论 -
异常点检测
import numpy as npfrom sklearn.ensemble import IsolationForestimport matplotlib.pyplot as pltnp.random.seed(29)x = np.random.normal(size=[100,2])x = 0.05*xx1 = x+2x2 = x-2训练数据x_train = np.vst...原创 2019-06-03 15:49:26 · 155 阅读 · 0 评论