Bagging和Boosting整理

Bagging

1.随机森林:两个随机:
a.对于每个子模型(决策树),用于训练子模型的数据是从原始数据中有放回的随机抽样产生的。
b.在每个子决策树构建的过程,对于每个分割点分割属性选择都是从所有的特征属性中随机选择K个特征属性,然后再从这K个特征属性中选择最优的作为当前节点的分割属性。

2.Bagging解决过拟合:a.期望通过多模型的融合,让模型的泛化能力更强,模型更加稳定。b.减少模型方差

Boosting

1.Boost解决欠拟合:a.期望通过多模型的融合,让模型的预测能力更强,对于训练数据的预测效果更好。b.减少模型偏度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值