Bagging
1.随机森林:两个随机:
a.对于每个子模型(决策树),用于训练子模型的数据是从原始数据中有放回的随机抽样产生的。
b.在每个子决策树构建的过程,对于每个分割点分割属性选择都是从所有的特征属性中随机选择K个特征属性,然后再从这K个特征属性中选择最优的作为当前节点的分割属性。
2.Bagging解决过拟合:a.期望通过多模型的融合,让模型的泛化能力更强,模型更加稳定。b.减少模型方差
Boosting
1.Boost解决欠拟合:a.期望通过多模型的融合,让模型的预测能力更强,对于训练数据的预测效果更好。b.减少模型偏度