最短路径问题相关算法、原理及适用场景

一、最短路径算法、原理及适用场景

深度优先搜索算法/广度优先搜索算法

从起始结点开始访问所有的深度遍历路径或广度优先路径,则到达终点结点的路径有多条,取其中路径权值最短的一条则为最短路径。

  • 算法思想:深度优先搜索算法(Depth First Search,简称DFS):一种用于遍历或搜索树或图的算法。沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。属于盲目搜索,最糟糕的情况算法时间复杂度为 O ( V ! ) O(V!) O(V!)

  • 应用场景:单源最短路径算法,不能求含负权边的图

  • 算法时间复杂度: O ( V ! ) O(V!) O(V!)
    深度优先搜索求解最短路问题完整代码:

import copy
import itertools


class DFS:
    def __init__(self, graph):
        self.adjacent_list = graph

    def run(self, source, target):

        # 深度优先搜索遍历,获取source-target的所有路径
        path = []
        paths = []
        self.helper(source, target, path, paths)

        # 返回最短路径,及距离
        shortest_path = None
        shortest_distance = 1 << 31
        for path in paths:
            distance = 0
            for i, j in itertools.pairwise(path):
                distance += self.get_distance(i, j)
            if distance < shortest_distance:
                shortest_distance = distance
                shortest_path = path

        return shortest_path, shortest_distance

    def helper(self, source, target, path, paths):
        current = source
        path.append(current)

        if current == target:
            paths.append(copy.deepcopy(path))
            path.remove(current)
            return
        neighbors = self.get_neighbors(current)

        for neighbor in neighbors:
            self.helper(neighbor, target, path, paths)
        path.remove(current)

    def get_neighbors(self, node):
        neighbor_weight_list = self.adjacent_list[node]
        neighbors = []
        for neighbor, weight in neighbor_weight_list:
            neighbors.append(neighbor)
        return neighbors

    def get_distance(self, i, j):
        neighbor_weight_list = self.adjacent_list[i]
        for neighbor, weight in neighbor_weight_list:
            if neighbor == j:
                return weight
        return None


if __name__ == '__main__':
    # 图的邻接矩阵表示
    adjacent_list = {
        0: [(1, 5), (2, 2)],
        1: [(3, 1), (4, 6)],
        2: [(3, 6), (5, 8)],
        3: [(4, 1), (5, 2)],
        4: [(6, 7)],
        5: [(6, 3)],
        6: []
    }
    dfs = DFS(adjacent_list)
    print(dfs.run(source=0, target=6))

深度优先搜索图时,可以使用栈,效率更高。此外,不必遍历完所有路径再计算路径距离选出最短路,每次回溯时,若当前距离比已找到的路径距离更长,即可提前结束本次搜索。

Floyd算法(Floyd-Warshell算法)

  • 应用场景:多源最短路径算法(即一次性计算出所有点之间相互的最短距离),适用于任何图,不管有向无向,边权正负,但是最短路必须存在。(可以处理有负权边的情况,但无法处理负权环)

  • 其思想是:两点之间的最短路径,要么是这两点直接相连,要么是通过某一点中转。如i到j点间的最短路,要么是i和j直接直接相连,要么通过i->k->j。因此floyd算法通过两个矩阵,distance记录任意两点之间的最短距离,sequence矩阵记录两点之间的中转点。对于任意的两点i和j,检查通过其他所有的点k,( k ∈ V − { i , j } k \in V -\{i,j\} kV{i,j}),是否距离更短,即若distance[i][k]+distance[k][j]<distance[i][j],则更新distance[i][j]=distance[i][k]+distance[k][j],并记录sequence[i][j]=k

  • 时间复杂度: O ( V 3 ) O(V^3) O(V3)(三层for循环)

import collections
import numpy as np


def floyd_warshall(adjacent_list, source=0, target=6):
    node_list = adjacent_list.keys()
    distance = np.empty(shape=(len(node_list), len(node_list)), )
    sequence = collections.defaultdict(int)
    distance.fill(np.inf)
    for i in range(distance.shape[0]):
        distance[i][i] = 0

    for i, j_weight_list in adjacent_list.items():
        for j, weight in j_weight_list:
            distance[i][j] = weight

    for i in node_list:
        for j in node_list:
            for k in node_list:
                if distance[i][k] + distance[k][j] < distance[i][j]:
                    distance[i][j] = distance[i][k] + distance[k][j]
                    sequence[i, j] = k
    print(distance)
    print(sequence)

    path = [target]
    mid = sequence.get((source, target))
    path.append(mid)
    while True:
        mid = sequence.get((source, mid), source)
        path.append(mid)
        if mid == source:
            break
    path.reverse()
    return path


if __name__ == '__main__':
    # 图的邻接矩阵表示
    adjacent_list = {
        0: [(1, 5), (2, 2)],
        1: [(3, 1), (4, 6)],
        2: [(3, 6), (5, 8)],
        3: [(4, 1), (5, 2)],
        4: [(6, 7)],
        5: [(6, 3)],
        6: []
    }
    print(floyd_warshall(adjacent_list, source=0, target=6))

Dijkstra算法

  • 应用场景:单源最短路径算法(只能计算出某个点到其他点的最短距离),无法处理存在负权边的情况,不能求含负权边的图
  • 算法思想:用两个集合,永久标号集合P和临时标号集合T,P的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而T则是记录还未求出最短路径的顶点(以及该顶点到起点V_0的距离)。初始化将所有顶点加入T集合,从T集合中获取最小标号的顶点vi(一开始是v0),将vi加入P集合。每次迭代查找vi的邻接点vj,更新T集合vj的距离( v j = v i + d i j v_j=v_i+d_{ij} vj=vi+dij),当T集合为空时,所有顶点都被永久标号,算法结束。

注:每次从T集合中取出最小标号的顶点,是有优先级的,即标号最小的优先弹出,因此可以使用优先队列,进一步可以使用斐波那契堆进行优化。

  • 时间复杂度:
    • 用数组来储存每个节点 O ( V 2 ) \text O(V^2) O(V2)
    • 一个普通优先级队列 O ( ( V + E ) lg ⁡ V ) \text O((V+E)\lg V) O((V+E)lgV)
    • 用斐波那契堆实现的优先级队列 O ( V lg ⁡ V + E ) \text O(V\lg V+E) O(VlgV+E)
import numpy as np

inf = np.inf


def dijkstra(graph, source, target):
    permanent = {source: 0}  # 永久标号,记录了每个点的最短距离
    temporary = {}  # 临时标号
    sequence = {}  # 记录每个顶点的最优前驱节点,用于记录最短路
    nodes = graph.keys()  # 顶点集合

    # 初始化
    for node in nodes:
        if node != source:
            temporary[node] = inf

    current_node = source

    while temporary:  # 若临时标号集合不为空,算法继续
        neighbor_weight_list = graph[current_node]
        for n, w in neighbor_weight_list:
            if permanent[current_node] + w < temporary[n]:
                temporary[n] = permanent[current_node] + w
                sequence[n] = current_node

        min_key = None
        min_val = 1e6
        for k, v in temporary.items():
            if v < min_val:
                min_val = v
                min_key = k
        temporary.pop(min_key)

        permanent[min_key] = min_val
        current_node = min_key

    # 从sequence中获取最短路
    current = target
    path = [target]
    while True:
        mid = sequence[current]
        path.append(mid)
        current = mid
        if mid == source: break
    path.reverse()
    # 返回最短路及距离
    return path, permanent[target]


if __name__ == "__main__":
    # 有向图的邻接表,点:【(临界点,权值),(邻接点,权值)】
    graph = {
        0: [(1, 5), (2, 2)],
        1: [(3, 1), (4, 6)],
        2: [(3, 6), (5, 8)],
        3: [(4, 1), (5, 2)],
        4: [(6, 7)],
        5: [(6, 3)],
        6: []
    }
    # 打印最短路径
    print(dijkstra(graph, 0, 6))

输出结果为:

([0, 1, 3, 5, 6], 11)

A*算法

Dijkstra算法和Floyd算法均为动态规划算法且是一种贪心算法,即进行无方向性的搜索,每一步转移都由计算机选择当前的最优解并生成新的状态,一直到达目标状态为止。由于其满足最优子结构性质,因此求出的最短路径序列的子序列也是最短路径,能够保证解为全局最优解。但当节点数量过大的时候,计算量也是无法接受的,由此诞生了A*算法。

贝尔曼福特算法(Bellman-Ford Algorithm)

  • 应用场景:单源最短路算法,不能处理含负权环的情况
  • 时间复杂度: O ( V E ) \text O(VE) O(VE),显然不如dijkstra快

算法步骤:
输入:图和起点source
输出:从source到其他所有顶点的最短距离。【注】如果有负权回路,则不计算该最短距离,没有意义,因为可以穿越负权回路任意次,则最终为负无穷。

  • step1. 初始化:source到自身的距离=0,到其他顶点的距离为正无穷 d i s t [ v ] ← inf ⁡ , d i s t [ s ] ← 0 dist[v]←\inf, dist[s]←0 dist[v]inf,dist[s]0
  • step2. 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行 ∣ V ∣ − 1 |V|-1 V1次,因为以source为起点的树的最大深度为 ∣ V ∣ − 1 |V|-1 V1
    【注】松弛操作:对于边(i,j)起点到j的距离>起点到i的距离+边(i,j)的权重,则更新起点到j的距离。
    # 松弛操作:
    if distance[to_node] > distance[from_node] + weight:
        distance[to_node] = distance[from_node] + weight
    
  • step3. 检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。
import numpy as np


def bellman_ford(adjacent_list, source, target):
    node_list = adjacent_list.keys()
    edge_weight = {}
    sequence = {}

    for i, j_weight_list in adjacent_list.items():
        for j, weight in j_weight_list:
            edge_weight[i, j] = weight

    distance = [0 if v == source else np.inf for v in node_list]  # 记录起点-所有点的最短距离
    for v in range(len(node_list) - 1):
        for (from_node, to_node), weight in edge_weight.items():
            if distance[to_node] > distance[from_node] + weight:
                distance[to_node] = distance[from_node] + weight
                sequence[to_node] = from_node

    # 从sequence中获取最短路
    current = target
    path = [target]
    while True:
        mid = sequence[current]
        path.append(mid)
        current = mid
        if mid == source: break
    path.reverse()
    # 返回最短路及距离
    return path, distance[target]


if __name__ == '__main__':
    # 图的邻接矩阵表示
    adjacent_list = {
        0: [(1, 5), (2, 2)],
        1: [(3, 1), (4, 6)],
        2: [(3, 6), (5, 8)],
        3: [(4, 1), (5, 2)],
        4: [(6, 7)],
        5: [(6, 3)],
        6: []
    }

    print(bellman_ford(adjacent_list, source=0, target=6))
([0, 1, 3, 5, 6], 11)

参考:

SPFA算法(Shortest Path Faster Algorithm)

Bellman—Ford算法的队列优化还有一个名字叫做SPFA。

算法应用场景

  • 确定起点的最短路径问题:即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。
  • 确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
  • 确定起点终点的最短路径问题:即已知起点和终点,求两点之间的最短路径。
  • 全局最短路径问题:求图中所有的最短路径。适合使用Floyd-Warshall算法。

二、k最短路径问题(K-Shortest Path Problem)

因为应用场景的多样性和复杂性,在路径规划问题中,业务人员不仅想要知道最短路径,还想知道次短路径。比如在地图导航应用中,用户往往想获取最短的几种行程方案,也许耗时最短的方案可能价格昂贵,或者需要用户进行多次换乘,而次短的方案可能更实惠,或者可以直达目的地,提供多条最优线路可以让用户能够根据自己额外的需求(比如时间、费用和舒适度)来做出权衡和决策。

基于这样的应用场景,1959年,Hoffman和Pavley首次提出了K-最短路问题,多年来一直受到业界的广泛关注,虽然现在已经出现了不少求解算法,但还没有一个算法像Dijkstra最短路算法那样得到广泛的认可。一个原因是因为应用场景的多样性和复杂性,还没有什么通用的K-最短路算法在所有场景下都表现良好,因此K-最短路算法仍有很大的优化空间。

基于Yen算法的k最短路径问题

Jin Y.Yen在1971年发表了求解K-最短路问题的Yen算法,Yen算法以Dijkstra算法为基础,采用了递推法中的偏离路径的算法思想来逐一求解前K条最短路,适用于计算非负权边的有向无环图中的单源K-最短路。networkx中Yen算法使用如下:

import networkx

def find_k_shortest_paths(source, target, k=3):
    return list(islice(networkx.shortest_simple_paths(graph, source, target), k))

Yen算法的优点是易于理解,可以准确地找到图中任意两节点间的k条最短路径,缺点是时间复杂度较高,时间代价较大,主要原因是在求 P i + 1 P_{i+1} Pi+1时,要将 P i P_i Pi上除了终止节点外的所有节点都视为偏离节点,从而在选择偏离节点发展候选路径时占用了大量的时间。

为提高运行速度,后人在此算法的基础上不断改进和发展。比较有效的算法之一是马丁斯(Martins)在1999年提出的MPS算法,其特点是简化了偏离路径的长度计算,在生成候选边时不像Yen算法那样计算每条候选路径的长度,而是要求更新每条弧上的减少长度,只选择长度减少最小的弧作为最短偏离路径,该算法在一般情况下可以提高运行速度,但是在最差的情况下与Yen算法的时间复杂度一样。

三、Networkx中最短路算法使用

导入networkx库

import matplotlib.pyplot as plt
import networkx

数据准备

# 图的邻接矩阵表示
graph_adjacent_list = {
        0: [(1, 5), (2, 2)],
        1: [(3, 1), (4, 6)],
        2: [(3, 6), (5, 8)],
        3: [(4, 1), (5, 2)],
        4: [(6, 7)],
        5: [(6, 3)],
        6: []
}
# 节点及坐标
node_coordinate = {
        0: (0, 3),
        1: (1.5, 1.5),
        2: (2, 4),
        3: (3.5, 3),
        4: (4.5, 1),
        5: (4.5, 4.5),
        6: (6.5, 3)
}

创建有向图

# 创建有向图
graph = networkx.DiGraph()
# 添加节点到graph
graph.add_nodes_from(graph_adjacent_list.keys())
# 添加边和权重到graph
src_tgt_weight_list = [(src, tgt, weight) for src, tgt_weight_list in graph_adjacent_list.items() for tgt, weight in tgt_weight_list]
graph.add_weighted_edges_from(src_tgt_weight_list)
# 图形可视化
networkx.draw_networkx(graph, pos=node_coordinate, with_labels=True, alpha=1, )

Floyd算法(Floyd-Warshell算法),Floyd算法, 返回每个点到其他所有点的最短距离

for k, v in networkx.floyd_warshall(graph, weight="weight").items():
    print(k, v)
0 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3772AC0>, {0: 0, 1: 5, 2: 2, 3: 6, 4: 7, 5: 8, 6: 11})
1 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF8E00>, {1: 0, 3: 1, 4: 2, 0: inf, 2: inf, 5: 3, 6: 6})
2 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF8F40>, {2: 0, 3: 6, 5: 8, 0: inf, 1: inf, 4: 7, 6: 11})
3 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF9080>, {3: 0, 4: 1, 5: 2, 0: inf, 1: inf, 2: inf, 6: 5})
4 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF91C0>, {4: 0, 6: 7, 0: inf, 1: inf, 2: inf, 3: inf, 5: inf})
5 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF9300>, {5: 0, 6: 3, 0: inf, 1: inf, 2: inf, 3: inf, 4: inf})
6 defaultdict(<function floyd_warshall_predecessor_and_distance.<locals>.<lambda>.<locals>.<lambda> at 0x000001DFB3FF93A0>, {6: 0, 0: inf, 1: inf, 2: inf, 3: inf, 4: inf, 5: inf})
#  使用networkx中的dijkstra算法,查找最短路径
networkx.dijkstra_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# 使用networkx中的bellman-ford算法,查找最短路径
networkx.bellman_ford_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# A*算法
networkx.astar_path(graph, source=0, target=6, weight='weight')
[0, 1, 3, 5, 6]
# shortest_path()方法查找最短路径,可以选择dijkstra(默认)和 bellman-ford
print(networkx.shortest_path(graph, source=0, target=6, weight='weight', method='dijkstra'))
[0, 1, 3, 5, 6]
# 查找起点-终点的所有路径,距离依次递增
list(networkx.shortest_simple_paths(graph, source=0, target=6, weight='weight'))
[[0, 1, 3, 5, 6],
 [0, 2, 5, 6],
 [0, 2, 3, 5, 6],
 [0, 1, 3, 4, 6],
 [0, 2, 3, 4, 6],
 [0, 1, 4, 6]]

单源最短路算法

计算给定起点-其他所有点的最短路径

# 使用dijkstra算法,计算给定起点-其他所有点的最短路径
networkx.single_source_dijkstra_path(graph, source=0, weight="weight")
{0: [0],
 1: [0, 1],
 2: [0, 2],
 3: [0, 1, 3],
 5: [0, 1, 3, 5],
 4: [0, 1, 3, 4],
 6: [0, 1, 3, 5, 6]}
# 使用bellman-ford算法,计算给定起点-其他所有点的最短路径
networkx.single_source_bellman_ford_path(graph, source=0, weight="weight")
{0: [0],
 1: [0, 1],
 2: [0, 2],
 3: [0, 1, 3],
 4: [0, 1, 3, 4],
 5: [0, 1, 3, 5],
 6: [0, 1, 3, 5, 6]}

若要在计算起点-终点的最短路径的同时获得距离,networkx可采用的方法有
single_source_dijkstra(G, source, target=None, cutoff=None, weight="weight")single_source_bellman_ford(G, source, target=None, weight="weight"),若指定起点和终点,则计算起点-终点的最短路径及距离;若指定起点,不指定终点,则计算起点-所有其他点的最短路径及距离。

# 使用single_source_dijkstra(), 计算给定起点-终点的最短路径及距离
networkx.single_source_dijkstra(graph, source=0, target=6, weight='weight')
(11, [0, 1, 3, 5, 6])
# 返回起点-终点的最短路径及距离
networkx.single_source_bellman_ford(graph, source=0, target=6, weight='weight')
(11, [0, 1, 3, 5, 6])
# 使用single_source_dijkstra(), 计算给定起点-所有其他点的最短路径及距离
networkx.single_source_dijkstra(graph, source=0, target=None, weight='weight')
({0: 0, 2: 2, 1: 5, 3: 6, 4: 7, 5: 8, 6: 11},
 {0: [0],
  1: [0, 1],
  2: [0, 2],
  3: [0, 1, 3],
  5: [0, 1, 3, 5],
  4: [0, 1, 3, 4],
  6: [0, 1, 3, 5, 6]})
# 使用single_source_bellman_ford(), 计算给定起点-所有其他点的最短路径及距离
networkx.single_source_bellman_ford(graph, source=0, target=None, weight='weight')
({0: 0, 1: 5, 2: 2, 3: 6, 4: 7, 5: 8, 6: 11},
 {0: [0],
  1: [0, 1],
  2: [0, 2],
  3: [0, 1, 3],
  4: [0, 1, 3, 4],
  5: [0, 1, 3, 5],
  6: [0, 1, 3, 5, 6]})
# 返回起点-终点的最短路(无权)
networkx.bidirectional_shortest_path(graph, source=0, target=6)
[0, 1, 4, 6]

搜索起点-终点间的所有路径:shortest_simple_paths(G, source, target, weight=None)

list(networkx.shortest_simple_paths(graph, source=0, target=6, weight="weight"))
[[0, 1, 3, 5, 6],
[0, 2, 5, 6],
[0, 2, 3, 5, 6],
[0, 1, 3, 4, 6],
[0, 2, 3, 4, 6],
[0, 1, 4, 6]]

返回结果为所有路径,第一个为最短路径。该方法shortest_simple_paths基于Yen’s Algorithm,

Jin Y. Yen, “Finding the K Shortest Loopless Paths in a Network”, Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp. 712-716.

如果搜索前k短路径,时间复杂度为 O ( k V 3 ) O(kV^3) O(kV3)

from itertools import islice
def k_shortest_paths(G, source, target, k, weight="weight"):
    return list(
        islice(networkx.shortest_simple_paths(graph, source, target, weight=weight), k)
    )
for path in k_shortest_paths(graph, 0, 6, k=3):
    print(path)
[0, 1, 3, 5, 6]
[0, 2, 5, 6]
[0, 2, 3, 5, 6]

参考

  • 深度优先算法详解
  • https://blog.csdn.net/weixin_44267007/article/details/119770562
  • https://blog.csdn.net/qq_40347399/article/details/119879750
  • https://blog.csdn.net/wzy_2017/article/details/78910697
  • 25
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值