B树应用及增删改查
我们都可能了解二叉树结构,或者平衡二叉树结构。父结点的值比左孩子大,比右孩子小。为了防止数倾斜,再加
上平衡操作。但是B树又有什么特点呢?
B树的结构特点:
B-树中所有结点中孩子结点个数的最大值成为B-树的阶,通常用m表示,从查找效率考虑,一般要求m>=3。一棵m阶
B树或者是一棵空树,或者是满足以下条件的m叉树。
1)每个结点最多有m个分支(子树);而最少分支数要看是否为根结点,如果是根结点且不是叶子结点,则至少要有
两个分支,非根非叶结点至少有ceil(m/2)个分支,这里ceil代表向上取整。
2)如果一个结点有n-1个关键字,那么该结点有n个分支。这n-1个关键字按照递增顺序排列。
3)每个结点的结构为:
n | k1 | k2 | ... | kn |
---|---|---|---|---|
p0 | p1 | p2 | ... | pn |
其中,n为该结点中关键字的个数;ki为该结点的关键字且满足ki<ki+1;pi为该结点的孩子结点指针且满足pi所指结
点上的关键字大于ki且小于ki+1,p0所指结点上的关键字小于k1,pn所指结点上的关键字大于kn。
4)结点内各关键字互不相等且按从小到大排列。
5)叶子结点处于同一层;可以用空指针表示,是查找失败到达的位置。
你会发现B树也是一个平衡树,而且要求更高,它要求所有叶子几点在同一层上。
B树的应用场景:
B树又称为多路查找树,由于树的高度较低,查找删除等工作效率会很高,一般可以用于数据库的索引,大大提高
磁盘I/O的效率。
B树或者B+树也会用在文件管理中
注意:B+树是B树的升级版,更适合建立索引和用来做文件管理。
1:B+树只有叶子结点才存储数据,其他的结点只是存储了指向孩子结点的指针,结点小,磁盘I/O就少。
2:B+树还有优化就是会把所有叶子结点用指针穿起来,通过遍历就能得到所有结点的值。