给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
可行思路:
暴力逐个节点匹配即可
代码样例:
#include <stdio.h>
#include <stdlib.h>
typedef struct Node *PtrToNode;
struct Node{
int data;
PtrToNode Left, Right;
};
typedef PtrToNode BinTree;
BinTree create(){
BinTree p = (BinTree)malloc(sizeof(struct Node));
p -> data = 0;
p -> Left = p -> Right = NULL;
return p;
}
BinTree add(BinTree bst, int x){
if(bst == NULL){
BinTree p = create();
p -> data = x;
return p;
}
if(x > bst -> data) bst -> Right = add(bst -> Right, x);
else bst -> Left = add(bst -> Left, x);
return bst;
}
int compare(BinTree a, BinTree b){
if(a == NULL && b == NULL) return 1;
if((a == NULL && b != NULL) || (a != NULL && b == NULL)) return 0;
if(a->data != b->data) return 0;
else if(!compare(a->Left, b->Left)) return 0;
else if(!compare(a->Right, b->Right)) return 0;
else return 1;
}
int N, L;
int main(){
while(scanf("%d", &N)){
if(N == 0) break;
scanf("%d", &L);
BinTree correctTree = NULL;
int num = N;
while(num--){
int x;
scanf("%d", &x);
correctTree = add(correctTree, x);
}
//printf("1111111\n");
BinTree checkTree = NULL;
for(int i = 0; i < L; i++){
checkTree = NULL;
int m = N;
while(m--){
int x;
scanf("%d", &x);
checkTree = add(checkTree, x);
}
//printf("22222222\n");
int flag = compare(correctTree, checkTree);
if(flag) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}