数论基础——同余

本文深入探讨数论中的同余概念,包括同余的基本性质、剩余类与剩余系,并介绍了如何利用同余性质快速判断数是否为某数的倍数。进一步讨论了同余方程的一般概念,特别是一次同余方程,以及解的存在性和数量。通过定理和例题,阐述了同余在数论问题解决中的应用。
摘要由CSDN通过智能技术生成

1.概念及基本性质

定义1:若

a=q_{1}m+r_{1}, b=q_{2}m+r_{2}

r_{1}=r_{2}

则称a与b模m同余,记作:

a\equiv b(mod\; m)

定理1:上式成立的充要条件是:

m|(a-b)

证明

a=q1m+r1

b=q2m+r2

因为r1=r2

所以a-b=(q1-q2)m

所以m|(a-b)

基本性质

  1.  a_{i}\equiv b_{i}(mod\: m),i=1,2\Rightarrow a_{1}\pm a_{2}\equiv b_{1}\pm b_{2}(mod\: m)
  2. a_{i}\equiv b_{i}(mod\: m),i=1,2\Rightarrow a_{1}a_{2}\equiv b_{1} b_{2}(mod\: m)
  3. c\equiv d(mod\: m),(c,m)=1,则ac=bd(mod\: m)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值