数论同余基础

同余

https://codecho.xyz/archives/Congruence-modulo.html

大佬博客?

0.前言:

一点点跟着学长的PPT摸索,貌似学exgcd前应该先学这个的…没事反正我菜呀,以下证明基本上都是个人理解证明的,如果有错误欢迎指出


1.概念

如果整数a和b除以正整数m的余数相等,则称a,b模m同余 记作: a ≡ b a\equiv b ab m o d mod mod m m m

a = q 1 ∗ m + r a=q_1*m+r a=q1m+r;

b = q 2 ∗ m + r b=q_2*m+r b=q2m+r;


2.条件

a ≡ b a\equiv b ab m o d mod mod m m m的充分必要条件是 m ∣ ( a − b ) m|(a-b) m(ab)

(一) 充分性证明:

已知 ( a − b ) % m = 0 (a-b)\%m=0 (ab)%m=0
a = q 1 ∗ m + r 1 a=q_1*m+r_1 a=q1m+r1 b = q 2 ∗ m + r 2 b=q_2*m+r_2 b=q2m+r2
显然 r 1 = = r 2 r_1==r_2 r1==r2

(二)必要性证明

同理,用定义完成简单证明


3.性质

  • (一)自反性(两个相同的数对任何数肯定都同余)

    a ≡ a a\equiv a aa m o d mod mod m m m

  • (二)对称性 (a与b同余就是b与a同余,似于交换律)

    a ≡ b a\equiv b ab m o d mod mod m m m, b ≡ a b\equiv a ba m o d mod mod m m m

  • (三)传递性(ab,bc推ac)

    已知 a ≡ b a\equiv b ab m o d mod mod m m m并且 b ≡ c b\equiv c bc m o d mod mod m m m

    可推 a ≡ c a\equiv c ac m o d mod mod m m m

  • (四)已知 a ≡ b a\equiv b ab m o d mod mod m m m,则a,b同时加上,减去,乘以一个整数c,得到的两个数仍然同余

    已知 a ≡ b a\equiv b ab m o d mod mod m m m

    1. ( a + c ) ≡ ( b + c ) (a+c)\equiv (b+c) (a+c)(b+c) m o d mod mod m m m

    2. ( a − c ) ≡ ( b − c ) (a-c)\equiv (b-c) (ac)(bc) m o d mod mod m m m

    3. ( a c ) ≡ ( b c ) (ac)\equiv (bc) (ac)(bc) m o d mod mod m m m

  • (五)已知 a ≡ b a\equiv b ab m o d mod mod m m m c ≡ d c\equiv d cd m o d mod mod m m m

    1. ( a x + c y ) ≡ ( b x + d y ) (ax+cy)\equiv (bx+dy) (ax+cy)(bx+dy) m o d mod mod m m m,余数为 r 1 x + r 2 y r_1x+r_2y r1x+r2y

    2. ( a c ) ≡ ( b d ) (ac)\equiv (bd) (ac)(bd) m o d mod mod m m m,余数为 r 1 r 2 r_1r_2 r1r2

  • (六)已知 a ≡ b a\equiv b ab m o d mod mod m m m,且 m ∣ d m|d md,则 a ≡ b a\equiv b ab m o d mod mod d d d

以上六个性质的证明都十分简单

  • (七)已知 a ≡ b a\equiv b ab m o d mod mod m m m

    f ( a ) ≡ f ( b ) f(a)\equiv f(b) f(a)f(b) m o d mod mod m m m

    其中, f ( x ) f(x) f(x)是整系数多项式, f ( x ) = C 1 x n + C 2 x n − 1 + … … + C k x k + … … + C n x + C n + 1 f(x)=C_1x^n+C_2x^{n-1}+……+C_kx^{k}+……+C_nx+C_{n+1} f(x)=C1xn+C2xn1++Ckxk++Cnx+Cn+1

    !特殊的: a n ≡ b n a^n\equiv b^n anbn m o d mod mod m m m

    证明思路
    分治思想,随意取出任意一项非零项 C k x k C_kx^k Ckxk,如果这一项满足 C k a k ≡ C k b k C_ka^k\equiv C_kb^k CkakCkbk m o d mod mod m m m,一项项证明过去,则 f ( a ) 和 f ( b ) f(a)和f(b) f(a)f(b)也符合
    证明
    同乘 C k C_k Ck不影响结果,所以先忽略
    a = q 1 m + r , b = q 2 m + r a=q_1m+r,b=q_2m+r a=q1m+r,b=q2m+r
    根据 ( x + y ) n (x+y)^n (x+y)n展开式
    可知 a k % m = r k % m a^k\%m=r^k\%m ak%m=rk%m,且 b k % m = r k % m b^k\%m=r^k\%m bk%m=rk%m
    所以 C k a k ≡ C k b k C_ka^k\equiv C_kb^k CkakCkbk m o d mod mod m m m得证

  • (八)已知 k a ≡ k b ka\equiv kb kakb m o d mod mod m m m,且 g c d ( k , m ) = d gcd(k,m)=d gcd(k,m)=d

    a ≡ b a\equiv b ab m o d mod mod m d m\over d dm

    !特殊的:当 g c d ( k , m ) = 1 gcd(k,m)=1 gcd(k,m)=1时, a ≡ b a\equiv b ab m o d mod mod m m m

    证明:
    假设 k = x 1 d , m = x 2 d k=x_1d,m=x_2d k=x1d,m=x2d,根据gcd性质可知 x 1 与 x 2 互 质 x_1与x_2互质 x1x2
    根据同余条件,由于 k a ≡ k b ka\equiv kb kakb m o d mod mod m m m可知, m ∣ k ( a − b ) m|k(a-b) mk(ab)=> m ∣ x 1 d ( a − b ) m|x_1d(a-b) mx1d(ab)=> x 2 ∣ x 1 ( a − b ) x_2|x_1(a-b) x2x1(ab)
    又由于 x 1 x 2 互 质 x_1x_2互质 x1x2,所以 x 2 ∣ ( a − b ) x_2|(a-b) x2(ab)=> m d m\over d dm ∣ ( a − b ) |(a-b) (ab),得证

  • (九) 已知 a ≡ b a\equiv b ab m o d mod mod m m m a ≡ b a\equiv b ab m o d mod mod n n n

    a ≡ b a\equiv b ab m o d mod mod l c m ( m , n ) lcm(m,n) lcm(m,n)

    推广到多个模数仍然成立,即

    a ≡ b a\equiv b ab m o d mod mod l c m ( x 1 , x 2 , … … , x n ) lcm(x_1,x_2,……,x_n) lcm(x1,x2,,xn)

    证明:
    l c m ( x 1 , x 2 … … , x n ) lcm(x_1,x_2……,x_n) lcm(x1,x2,xn)转化为 x 1 x 2 … … x n g c d ( x 1 , x 2 , … … , x n ) x_1x_2……x_n\over gcd(x_1,x_2,……,x_n) gcd(x1,x2,,xn)x1x2xn通过性质八易证


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值