为什么大部分小数在计算机中是不精确的

本文介绍了Java中浮点数类型float和double的存储结构,包括符号位、指数位和尾数位的分配。由于计算机以二进制表示浮点数,可能导致精度损失。转换过程涉及将十进制数转换为二进制,浮点数的不精确性由此产生。此外,还详细阐述了整数和小数部分的二进制转换方法。
摘要由CSDN通过智能技术生成

在java中,把浮点数分为了 float(单精度) 类型和 double(双精度) 类型

       float类型占4个字节,double类型占8个字节

浮点数和整数的存储方式不一样,整数只有两部分符号位和尾数位,但是浮点数符号位指数位尾数位

        float类型符号位占1位,指数部分占用8bit(1个字节)的二进制数,尾数占23位

        double类型符号位占1位,指数部分占11位,尾数占52位

在计算机的世界里,它只认识二进制,也就是 0和1 组成的,所以在计算机执行浮点数运算的时候都是转换为二进制来进行计算,而大部分情况下,转换为二进制时有可能是无限循环下去的,这个时候因为存储的大小,就会舍弃多余的,因此再转为十进制时,就不是原本的数字了,精度就会丢失

十进制整数转换为二进制整数

(1)用2整除十进制整数,可以得到一个商和余数;

(2 )再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止;

(3) 然后把得到的余数从下往上,依次排列起来。

十进制小数转换成二进制小数

        整数部分算整数部分,小数部分算小数部分,分开计算

        小数部分:可以得到整数部分,就算作1,没有得到就算作0

(1)用2乘十进制小数,可以得到积

(2)将积的整数部分取出,再用2乘余下的小数部分,又得到一个积

(3)再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位。或者达到所要求的精度为止。

综上所述,就可以验证"大部分浮点数在计算机中是不精确的"这个结论了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值