对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。

import java.io.IOException;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

 

public class Merge {

 

    public static class Map extends Mapper<Object, Text, Text, Text> {

        private static Text text = new Text();

 

        @Override

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

            text = value;

            context.write(text, new Text(""));

        }

    }

 

    public static class Reduce extends Reducer<Text, Text, Text, Text> {

        @Override

        public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {

            context.write(key, new Text(""));

        }

    }

 

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        conf.set("fs.defaultFS", "hdfs://localhost:9000");

        String[] otherArgs = new String[]{"input", "output"};

        if (otherArgs.length != 2) {

            System.err.println("Usage: Merge and duplicate removal <in> <out>");

            System.exit(2);

        }

        Job job = Job.getInstance(conf, "Merge");

        job.setJarByClass(Merge.class);

        job.setMapperClass(Map.class);

        job.setReducerClass(Reduce.class);

        job.setOutputKeyClass(Text.class);

        job.setOutputValueClass(Text.class);

        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));

        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

 

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值