【2】使用MATLAB进行机器学习(回归)

本文详细介绍了如何使用MATLAB进行机器学习回归分析。从选择数据开始,通过Regression Learner应用训练模型,探讨了降维和数据标准化的影响,并展示了如何生成模型代码以供后续预测使用。
摘要由CSDN通过智能技术生成

2022年5月31日更新:
更加完整的回归流程及m代码实现,请见“实战1 空气质量数据的校准”。实战1 - 空气质量数据的校准

(一)选择数据

打开APP中 Regression Learner,点击新建,
在这里插入图片描述
这里我编了一个table,里面存放数据,命名为DATA_table。选择第8个变量Var8为Response(目标变量),选择其余8个变量为Predictors(特征量)。默认交叉验证打开,点开始。
在这里插入图片描述

(二)训练模型

选择 All,点 Train,使用所有模型都跑一遍。
在这里插入图片描述
显示线性模型效果最好。
在这里插入图片描述

  • 23
    点赞
  • 209
    收藏
    觉得还不错? 一键收藏
  • 23
    评论
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值