携程数据清洗

本文介绍了在携程数据清洗过程中,从读取数据集到初步处理的数据预处理步骤,涉及数据集的导入、模块的使用,以及数据的基本信息查看。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

携程数据清洗

数据集

导入模块

from pandas import DataFrame,Series
import pandas as pd
import numpy as np
# FuzzyWuzzy 简单易用的字符串模糊匹配工具
from fuzzywuzzy import process
from fuzzywuzzy import fuzz

读取数据

df=pd.read_csv('携程/携程旅游数据.csv',names=['信息','旅游方式','出发地','供应商','公司','评分','出游人数','点评','价格','标签'])
df.info()
df.head(1)

image-20201023215119193

# 删除旅游方式 和 出发地 列
df=df.drop(['旅游方式','出发地'],axis=1)
df.head(2)

image-20201023215209393

# 删除重复项
df.drop_duplicates(inplace=True)
# 查看 去重后还有多少条数据
df.shape

(7311, 8)

# 删除所有为 nan 的行
df.dropna(inplace=True)
# 查看  删除空值后还有多少条数据
df.shape

(7179, 8)

# 重置索引
df.reset_index(inplace=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值