Codeforces-1140D Minimum Triangulation(假DP贪心+真水题)

题目: 传送门
思路: 将一个多边形划分成多个三角形,一定有个顶点,所有三角形会经过这个点,我们不妨把这个点成为聚点,用dp[i]表示聚点为i时三角形的权值和,当n为5时,i 为1是,dp[1] = 1* 2* 3+1* 3* 4+1* 4* 5.
dp[2] = 2* 3* 4+2* 4* 5+2* 5* 1.可以得出dp[2] = (dp[1] - 1*2 3) / 1 2+215.
则 dp[i] = (dp[i-1] - (i-1) *i *(i+1)) / (i-1) * i +i *(i-1) *(i-2);
代码:

long long dp[550];
int main() {
    int n;
    cin>>n;
    long long ans = 0;
    for(int i = 2;i<n;i++) {
        dp[1]+=i*(i+1);
    }
    //cout<<dp[1]<<endl;
    ans = dp[1];
    for(int i =2;i<=n;i++) {
        dp[i] = (dp[i-1]-(i-1)*(i-(i-1)/n*n)*(i+1-i/n*n))/(i-1)*i;
        //cout<<dp[i]<<'?'<<endl;
        dp[i] += i*(i-1+n-(i-2+n)/n*n)*(i-2+n-(i-3+n)/n*n);
        //cout<<dp[i]<<endl;
        ans = min(ans,dp[i]);
    }
    cout<<dp[1]<<endl;
    return 0;
}

测了几组样例,会发现聚点为1时一定最小,直接输出dp[1]即可,当然也可以用ans记录所有dp[]的最小值再输出.

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值