DenseNet121是DenseNet系列中的一个经典模型,它具有121层的深度。
下面是DenseNet121的网络结构的概述:
- 输入层:接受输入图像。
- 卷积层:使用7x7的卷积核对输入图像进行卷积操作,步幅为2,输出通道数为64,padding方式为valid。
- 批归一化层:对卷积层的输出进行批归一化操作。
- ReLU激活函数:应用ReLU激活函数对批归一化层的输出进行非线性变换。
- 池化层:使用3x3的最大池化层进行下采样,步幅为2,减少特征图的尺寸。
- Dense Block 1:由多个密集块(Dense Block)组成,每个密集块中包含若干个密集连接层(Dense Connection Layer)。
- 过渡层 1:用于降低特征图的尺寸和通道数。包括1x1的卷积层和2x2的平均池化层。
- Dense Block 2:与Dense Block 1类似的结构。
- 过渡层 2:类似于过渡层 1。
- Dense Block 3:与Dense Block 1类似的结构。
- 过渡层 3:类似于过渡层 1。
- Dense Block 4:与Dense Block 1类似的结构。
- 全局平均池化层:对最后一个密集块的输出特征图进行全局平均池化操作,将特征图的尺寸降为1x1。
- 全连接层:将全局平均池化层的输出连接到一个全连接层,用于最终的分类任务。
- Softmax层:应用Softmax函数对全连接层的输出进行归一化,得到最终的分类结果。
以上是DenseNet121的网络结构的概述。DenseNet通过引入密集连接和特征重用的机制,在相对较少的参数量下实现了较好的性能,并且能够缓解梯度消失问题。实际网络中,还会存在一些细节处理,如卷积核大小、通道数等,但整体结构与上述描述相符。