《论文阅读》Single Image Reflection Removal through Cascaded Refinement

留个笔记自用

Single Image Reflection Removal through Cascaded Refinement

做什么

在真实世界的照片中,经常会出现玻璃反射的不良现象。它不仅显著降低了图像质量,而且影响了目标检测和语义分割等下游计算机视觉任务的性能。
在这里插入图片描述
简单来说就是照相的时候正前方的镜片会反光,而要做的就是把一张composed图分割成两张,一张reflection,一张transmission
在这里插入图片描述

做了什么

这里用到了另外一篇论文的想法
Hidden Community Detection in Social Networks
在这里插入图片描述
上图是一个人群社交网络,假设知道其中节点之间的权重边,这样就能找到存在着主要社交网络Team1、Team2、Team3,但其中比如Team1中存在三个人和Team2的三个人还存在着一个隐藏关系Tennis group。
如何找到隐藏社交网络的方法:step1.先用baseline(最近邻之类的)找到所有优势社区(假设有图上3个),削弱它们各自内部的连接权重,这样优势社区内部的连接全部就减弱了,但该社区与外部的连接权重不变。step2.重复使用baseline算法,可能就能发现隐藏社区。
在这里插入图片描述
这里假设T图为一个社区,R图为一个社区,从T中分离出两个社区之后,如果两者是有关系并且能分离的,削弱T图内部联系->得到R->削弱R内部联系->得到T->削弱T内部联系->得到R…

怎么做

在这里插入图片描述
输入:T(最开始初始化为I)、I、R堆叠成9通道的图
中间部分分为上下两个网络GT、GR这里可以理解为两个生成网络,GT生成一轮迭代后的T图,GR生成一轮迭代后的R图,两者结合生成一轮迭代后的I图,三张图为一轮迭代的输出,将三张图分别替代输入的T、I、R后开始新一轮迭代
论文中由T和R组成I的方式为
I =clip(α · T + R). α ∈ [0.8, 1]
在这里插入图片描述
然后是中间的GT和GR,网络结构相同但不共享权重:
前半部分是11个Conv+relu寻找图片特征,中间是一层Convlstm,后半部分是8个Deconv+relu生成图片,稍微特点的地方就是中间的Convlstm部分,可从下面理解,Convlstm沟通的是不同迭代轮次的中间层
在这里插入图片描述
接下来是LOSS:
在这里插入图片描述
第一个loss就是图片中的重构loss,直接对比新一轮迭代生成的I图和原图的像素差,这就是为了保证生成的合成图要和原来类似,防歪

在这里插入图片描述
在这里插入图片描述
第二个LOSS是perceptual loss,即为下图的这部分,前面说到右半部分是生成器,从中抽取原图比例大小的层取出来,比如Ground Truth是256×256的,则生成器的右边第三层得到的就是128×128的,这就是网络中间生成的图,将这张图经过VGG得到一个特征M,将256×256的原图进行比例缩小成128×128的,经过VGG也能得到一个特征N,将M、N做LOSS,其他比例比如64×64也同理。这应该是为了使T图的细节特征和全局特征都与Ground truth靠近
在这里插入图片描述
第三个LOSS就是计算迭代生成的T图和原图的像素差和迭代生成的R图和I与T直接做差得到的图的像素差
这里的I与T直接做差的意思是在这里插入图片描述
在这里插入图片描述
第四个LOSS,简单来说就是构造一个辨别器discriminator,也就是对抗LOSS,尽可能地辨别真实图片和模型生成图片的区别,这里用的是《Single Image Reflection Separation with Perceptual Losses》的想法,这个loss用处就是当reflection层和transmission层分离之后,transmission层图片会变得不真实,所以用这个来进行微调。
在这里插入图片描述
组合,这里的λ1=1,λ2=1,λ3=2,λ4=0.01

结论

1.lstm来迭代式分离R图和T图,但其实跟motivation没什么关系。。(感觉可以用图卷积来模拟社交网络)
2.同时得到R图和T图,并且整了一堆loss来评价

在单个图像去雾算法中,使用暗通道先验方法(matlab single image haze removal using dark channel prior)是一种常用的方法。 该方法利用了图像中的暗像素值数据来对图像中的雾进行估计和消除。在图像中,由于雾的存在,远处的物体会有较高的亮度减弱,而靠近观察点的物体则有较高的亮度增强。由于光照强度不均匀,较暗的像素通常代表空气中的雾浓度较低,而较亮的像素通常代表雾浓度较高。 暗通道先验方法的基本思想是,通过查找图像中的暗像素值,可以估计出该区域中的最小远景透射率。透射率是雾的浓度与雾气对光的散射强度之间的比例关系。通过估计最小透射率,可以推断出雾浓度的分布,从而进行雾的去除。这个估计过程可以通过计算图像每个像素点的一个小窗口内的最小像素值来实现。 具体的暗通道先验算法包括以下步骤: 1. 对输入的雾图像进行预处理,包括图像的亮度归一化和颜色空间转换。 2. 计算每个像素点对应的暗通道,即选择一个固定大小的窗口,在窗口内找到最小像素值。 3. 估计最小透射率,最常用的方法是使用暗像素值和其相应的原始像素值计算得到。 4. 通过估计的透射率和原始图像进行重建,可以得到去雾后的图像。 暗通道先验方法是一种简单但有效的去雾算法,可以在图像中消除大部分的雾效果,提高图像的清晰度和可见度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值