文献阅读1-Single Image Reflection Separation with Perceptual Losses

摘要:
1.是一种从单个图像分离反射的方法。
2.利用全卷积网络,进行端对端的训练。
3.主要是两种损失函数:
(1)来自perception network的feature loss
(2)adversarial loss
4.还提出了一种exclusion loss,能够像素级分离反射。
5.另外的贡献是制作了数据集。
6.采用PSNR和SSIM来作为客观评价指标。
Introduction:
1.带反射的图像的数学模型:I=T+R
其中T为透射层,R为反射层。我们的目标是在给定I的情况下,恢复T。
2.CEILNet用了DNN训练了一个模型进行反光消除,但是只学到了像颜色、边缘这样的低层信息,学不到高层的信息。Low-level信息对于反光消除是远远不够的,因为颜色是随机的。
3.我们训练全卷积神经网络,利用perception loss,能够学到低层以及高层信息。
perceptual losses(这两个分别是对图片信息的不同level进行处理):
(1)feature loss主要是来自visual perceptual network
(2)adversarial loss主要是去修正输出的transmission layer的。
exclusion loss主要是为了在梯度上对独立的层进行分离。
related work:
1.Multiple-image methods.
运动提示或者从校准的摄像机推断出,或者运动视差,假设背景和反射物体具有非常不同的运动场。
2.Single-image methods
一般来说用单张图片作为输入都要有预先定义的先验条件。比较常用的有两种:
(1)用图片的梯度稀疏性(gradient sparsity)来找到最小的边缘和角点,然后进行层的分离。gradient sparsity一般都有用户的协助。这类方法是基于low-level 的图片信息,所以面对high-level时就无能为力了。
(2)另一个的先验条件是反射层总是失焦并且比较平滑(out of focus and appears smooth)。虽然反射层相对平滑是合理的,但是如果反射层对比度比较高的话,这就不可行了。
https://github.com/fqnchina/CEILNet
overview:
(一)、loss函数包括三部分:
1.feature loss:比较图片的featur space
2.adversarial loss:对真实图片的修复
3.exclusion loss:在梯度域中将transmission layer和reflection layer进行分离。
总的loss如下:
L(θ)=w1Lfeat(θ)+w2Ladv(θ)+w3Lexcl(θ)
其中w1=0.1,w2=0.01,w3=1
(二)、输入
先从VGG-19中提取conv1_2, conv2_2, conv3_2, conv4_2, conv5_2的特征,然后和输入图片拼接起来作为模型f的输入。从其他模型中提取的特征,形成超列特征,为了使输入的特征,学到了其他大型数据集上的视觉感知。1472维。
(三)、

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

brave_555

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值