Andrew Ng Deep Learning 第二课 第一周

前言

网易云课堂(双语字幕,不卡):https://mooc.study.163.com/smartSpec/detail/1001319001.htmcourseId=1004570029、
Coursera(贵):https://www.coursera.org/specializations/deep-learning
本人初学者,先在网易云课堂上看网课,再去Coursera上做作业,开博客以记录,文章中引用图片皆为课程中所截。
题目转载至:http://www.cnblogs.com/hezhiyao/p/7810725.html
编程作业所需库:链接:https://pan.baidu.com/s/1aS1Oia2fskemBHHEMnSepw 密码:66gd

机器学习基础

1.训练集/开发集/测试集

在这里插入图片描述
Tips:从不同方式得到的数据分两组或者一组数据按照3:1:1方式分三组

2.偏差(bias)/方差(variance)

在这里插入图片描述
在这里插入图片描述
Tips:训练集误差高,说明未拟合,为高偏差,需要更好或者更深层的网络才能训练,开发集误差高(即训练完训练集得到的参数再训练的集合)误差高,说明此时训练集高度拟合但别的集合未拟合,即参数过拟合,为高方差,需要更多数据或者使用正则化

正则化

logistic 回归

在这里插入图片描述
在这里插入图片描述
Tips:范数即为w矩阵中每个数的平方的和

神经网络

在这里插入图片描述
Tips:范数即为先计算每层w矩阵的各个元素平方的和,再对所有层进行总和
在这里插入图片描述
在这里插入图片描述
Tips:db算法不变。

dropout正则化

在这里插入图片描述
Tips:简单来说就是从原网络中随机性删除几个节点后再进行训练。
在这里插入图片描述
Tips:首先先定义一个超参数keep-prob,即对某个单位元来说它保留的概率,然后进行筛选,之后再对整个神经网络的每个值处以keep-prob使a3期望值不变
在这里插入图片描述
Tips:对每层设定的keep-prob可以不同
Tips:dropout正则化一般是在确定过拟合的情况下载才使用

其他正则化方法

在这里插入图片描述
在这里插入图片描述

正则化输入

在这里插入图片描述

编程作业

# import packages
import numpy as np
import matplotlib.pyplot as plt
import reg_utils
import sklearn
import sklearn.datasets
import scipy.io

%matplotlib inline


def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0],20,3,1]

    #初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    #开始学习
    for i in range(0,num_iterations):
        #前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3 , cache = reg_utils.forward_propagation(X,parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3 , cache = forward_propagation_with_dropout(X,parameters,keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        #计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3,Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3,Y,parameters,lambd)

        #反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert(lambd == 0  or keep_prob ==1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X,Y,cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        #更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        #记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                #打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    #是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    #返回学习后的参数
    return parameters


def compute_cost_with_regularization(A3,Y,parameters,lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]
    
    cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost
    
    ### START CODE HERE ### (approx. 1 line)
    L2_regularization_cost=(lambd/(2*m))*(np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3)))
    ### END CODER HERE ###
    
    cost = cross_entropy_cost + L2_regularization_cost
    
    return cost
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    
    ### START CODE HERE ### (approx. 1 line)
    dW3=1./m * np.dot(dZ3, A2.T) + (lambd/m)*W3
    ### END CODE HERE ###
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))  #  np.int64(A2 > 0)是与A2大小对应的值全为1的矩阵,即relu函数的导数
    ### START CODE HERE ### (approx. 1 line)
    dW2=(np.dot(dZ2,A1.T)/m+(lambd/m)*W2)
    ### END CODE HERE ###
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))  #  np.int64(A1 > 0)是与A1大小对应的值全为1的矩阵,即relu函数的导数
    ### START CODE HERE ### (approx. 1 line)
    dW1=(np.dot(dZ1,X.T)/m+(lambd/m)*W1)
    ### END CODE HERE ###
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients
def forward_propagation_with_dropout(X,parameters,keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    ### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above. 
    D1=np.random.rand(A1.shape[0],A1.shape[1])     # Step 1: initialize matrix D1 = np.random.rand(..., ...)
    D1=D1<keep_prob                             # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)
    A1=np.multiply(A1,D1)                           # Step 3: shut down some neurons of A1
    A1=A1/keep_prob                                # Step 4: scale(扩展) the value of neurons that haven't been shut down
    ### END CODE HERE ###
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    ### START CODE HERE ### (approx. 4 lines)
    D2=np.random.rand(A2.shape[0],A2.shape[1])     # Step 1: initialize matrix D2 = np.random.rand(..., ...)
    D2=D2<keep_prob                             # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)
    A2=np.multiply(A2,D2)                           # Step 3: shut down some neurons of A2
    A2=A2/keep_prob                                # Step 4: scale(扩展) the value of neurons that haven't been shut down
    ### END CODE HERE ###
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
    
    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    
    return A3, cache
def backward_propagation_with_dropout(X,Y,cache,keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    dA2 = np.dot(W3.T, dZ3)
    ### START CODE HERE ### (≈ 2 lines of code)
    dA2 =np.multiply(dA2,D2) # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation
    dA2 =dA2/ keep_prob      # Step 2: Scale(缩放) the value of neurons that haven't been shut down (关闭)
    ### END CODE HERE ###
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T)
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    ### START CODE HERE ### (≈ 2 lines of code)
    dA1 = np.multiply(dA1,D1)   # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation
    dA1 = dA1/ keep_prob       # Step 2: Scale the value of neurons that haven't been shut down
    ### END CODE HERE ###
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients   
def forward_propagation(x,theta):
    """

    实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x)

    参数:
    x  - 一个实值输入
    theta  - 参数,也是一个实数

    返回:
    J  - 函数J的值,用公式J(theta)= theta * x计算
    """
    ### START CODE HERE ### (approx. 1 line)
    J = theta * x
    ### END CODE HERE ###
    
    return J
def backward_propagation(x,theta):
    """
    计算J相对于θ的导数。

    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数

    返回:
        dtheta  - 相对于θ的成本梯度
    """
    ### START CODE HERE ### (approx. 1 line)
    dtheta = x
    ### END CODE HERE ###
    
    return dtheta 
def gradient_check(x,theta,epsilon=1e-7):
    """

    实现图中的反向传播。

    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数
        epsilon  - 使用公式(3)计算输入的微小偏移以计算近似梯度

    返回:
        近似梯度和后向传播梯度之间的差异
    """
    # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
    ### START CODE HERE ### (approx. 5 lines)
    theta1=theta+epsilon
    theta2=theta-epsilon
    j1=forward_propagation(x,theta1)
    j2=forward_propagation(x,theta2)
    gradapprox=(j1-j2)/(2*epsilon)
    ### END CODE HERE ###
    
    # Check if gradapprox is close enough to the output of backward_propagation()
    ### START CODE HERE ### (approx. 1 line)
    grad=backward_propagation(x,theta)
    ### END CODE HERE ###
    
    ### START CODE HERE ### (approx. 1 line) 
    numerator = np.linalg.norm(grad - gradapprox)   # Step 1' numpy.linalg.norm的用法:https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)     # Step 2'
    difference = numerator / denominator                              # Step 3'
    ### END CODE HERE ###
    
    if difference < 1e-7:
        print ("The gradient is correct!")
    else:
        print ("The gradient is wrong!")
    
    return difference
def forward_propagation_n(X, Y, parameters):
    """
    实现图中的前向传播(并计算成本)。

    参数:
        X - 训练集为m个例子
        Y -  m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)

    返回:
        cost - 成本函数(logistic)
    """
    
    # retrieve (检索)parameters
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)

    # Cost
    logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = 1./m * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    
    return cost, cache

def backward_propagation_n(X,Y,cache):
    """
    实现图中所示的反向传播。

    参数:
        X - 输入数据点(输入节点数量,1)
        Y - 标签
        cache - 来自forward_propagation_n()的cache输出

    返回:
        gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1. / m) * np.dot(dZ3,A2.T)
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    #dW2 = 1. / m * np.dot(dZ2, A1.T) * 2  # Should not multiply by 2
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    #db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients
def gradient_check_n(parameters,gradients,X,Y,epsilon=1e-7):
    """
    检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度

    参数:
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
        grad_output_propagation_n的输出包含与参数相关的成本梯度。
        x  - 输入数据点,维度为(输入节点数量,1)
        y  - 标签
        epsilon  - 计算输入的微小偏移以计算近似梯度

    返回:
        difference - 近似梯度和后向传播梯度之间的差异
    """
    # Set-up variables
    parameters_values, _ = dictionary_to_vector(parameters)
    grad = gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]  #    num_parameters应该是列向量,图2中是行向量
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))
    
    # Compute gradapprox
    for i in range(num_parameters):
        
        # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
        # "_" is used because the function you have to outputs two parameters but we only care about the first one
        ### START CODE HERE ### (approx. 3 lines)
        theta[i]=np.copy(parameters_values)
        thetaplus[i]=theta[i]+epsilon
        J_plus[i],cache=forward_propagation_n(x, y, gc_utils.vector_to_dictionary(thetaplus))
        ### END CODE HERE ###
        
        # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
        ### START CODE HERE ### (approx. 3 lines)
        theta[i]=np.copy(parameters_values)
        thetaminus[i]=theta[i]-epsilon
        J_minus[i],cache=forward_propagation_n(x, y, gc_utils.vector_to_dictionary(thetaplus))
        ### END CODE HERE ###
        
        # Compute gradapprox[i]
        ### START CODE HERE ### (approx. 1 line)
        gradapprox=(J_plus[i]-J_minus[i])/(2*epsilon)
        ### END CODE HERE ###
    
    # Compare gradapprox to backward propagation gradients by computing difference.
    ### START CODE HERE ### (3 lines)
    numerator =  np.linalg.norm(grad -  gradapprox)                     # Step 1'
    denominator = np.linalg.norm(grad)+np.linalg.norm( gradapprox)      # Step 2'
    difference =numerator /  denominator                               # Step 3'
    ### END CODE HERE ###

    if difference > 2e-7:
        print ("\033[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "\033[0m")
    else:
        print ("\033[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "\033[0m")
    
    return difference


X, Y, parameters = gradient_check_n_test_case()

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)

#train_X, train_Y, test_X, test_Y = load_2D_dataset(is_plot=False)

梯度检查

在这里插入图片描述
在这里插入图片描述

题目

在这里插入图片描述
Tips:样本总书够大的情况下,开发集只是为了用一定量的样本来检测算法是否合理,在调整较下比例的前提下保证开发集的数量就行了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Tips:这里若有正则化,还可以增大λ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值