题目链接:http://codeforces.com/problemset/problem/106/C
Problem Description
Lavrenty, a baker, is going to make several buns with stuffings and sell them.
Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.
Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.
Find the maximum number of tugriks Lavrenty can earn.
Input
The first line contains 4 integers n, m, c0 and d0 (1 ≤ n ≤ 1000, 1 ≤ m ≤ 10, 1 ≤ c0, d0 ≤ 100). Each of the following m lines contains 4 integers. The i-th line contains numbers ai, bi, ci and di (1 ≤ ai, bi, ci, di ≤ 100).
Output
Print the only number — the maximum number of tugriks Lavrenty can earn.
SampleInput 1
10 2 2 1
7 3 2 100
12 3 1 10
SampleOutput 1
241
SampleInput 2
100 1 25 50
15 5 20 10
SampleOutput 2
200
Note:
To get the maximum number of tugriks in the first sample, you need to cook 2 buns with stuffing 1, 4 buns with stuffing 2 and a bun without any stuffing.
In the second sample Lavrenty should cook 4 buns without stuffings.
这题还是一题背包dp的基础题,我写来稍微巩固一下背包的基础。
大致题意是这样的:主角有n克面粉和m种佐料。首先他可以只用c0克面粉制成价值为d0的产品。然后给出m种佐料的信息,第i种佐料有ai克,拿出bi克和ci克的面粉一起可以制成价值为di的产品。
很明显是背包基础题,可以先转到我第一篇背包博客看看,https://blog.csdn.net/qq_43317133/article/details/99307784
这题我就写得简略点。
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <math.h>
#include <map>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int MAX=1e1+5;
int dp[1005];
int main()
{
int n, m, a, b, c, d, i, j, k;
cin >> n >> m >> c >> d;
for (i=c; i<=n; i++)/// 因为自己做不需要佐料,只消耗面粉,所以先全部初始化
dp[i] = i/c*d; ///为自己动手做的,注意在dp[i]处我们只有i克面粉
for (i=0; i<m; i++)
{
scanf("%d%d%d%d", &a, &b, &c, &d);
for (j=1; j<=a/b; j++)/// 该佐料的量只够做a/b份成品
for (k=n; k>=c; k--)/// 这一个循环只决定了一份佐料是否要换入,换在哪里
dp[k] = max(dp[k-c]+d, dp[k]);/// dp[k-c]是当前面粉量k,给当前佐料留一
///份面粉的情况下的最优解,然后max判断当前面粉量有没有必要留出c克面粉给
///佐料i,最后在面粉为k克处保留最优解
}
cout << dp[n] << endl;
return 0;
}