移动端 3060 6G 安装配置 TensorFlow、Keras 和 PyTorch

文章指导如何在移动端设备上配置R7-6800H和RTX3060,解决Tensorflow和Pytorch未识别GPU的问题,包括检查方法、GPU驱动(CUDA10.1,cudnn7.6.5)的正确安装以及与Tensorflow2.3.0,Keras2.4.3,Pytorch1.8.1+cu101的版本对应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置条件

硬件条件

  R7-6800H + RTX3060(移动端)

检查方法

  检测 Tensorflow 是否检测得到 GPU,运行以下 Python 代码

import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
cpus = tf.config.experimental.list_physical_devices(device_type='CPU')
print(gpus, cpus)

  如果运行结果为

[] [PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]

则说明 TF 没有检测到 GPU。

  检测 Pytorch 是否检测得到 GPU,运行以下 Python 代码

import torch
print(torch.cuda.is_available())  # 判断是否可以使用gpu计算
print(torch.cuda.device_count())  # 显示gpu数量

  如果运行结果为

False
0

则说明 Pytorch 没有检测到 GPU。

解决方法

  我是看了别的大佬的文章整理的1 2,作为笔记总结供自己日后参考,所以以下我只会直接给出对应的版本和安装指令。

  所有的包如果之前有下载过不同版本的,最好是先卸载再安装。

GPU 驱动

CUDA==10.1

  用 conda 下载安装,pip 不行,具体原因未知

conda install cudatoolkit=10.1

cudnn==7.6.5

  同样只能用 conda 下载安装

conda install cudnn=7.6

Tensorflow

tensorflow==2.3.0

  这里可以稍微注意一下,用 pip 安装 tensorflow 之前,最好确保 Python 版本在 3.5~3.8 之间3,否则可能会出现报错。

  这里就只能用 pip 下载安装了

pip install tensorflow-gpu==2.3.0

Keras

keras==2.4.3

  如果要用到 Keras 进行模型构建,也需要对齐版本,否则会出现一系列问。详细的一些操作可以参考这篇文章:win10安装tensorflow2.3.0和对应2.4.3版本的keras

pip install keras==2.4.3

Pytorch

torch==1.8.1+cu101

  Pytorch 官网其实有提供官方的版本对齐文档4,由于上面我们的 CUDA 版本为 10.1,所以我直接选择了最新的对应 CUDA 10.1 的 torch 版本。

  这里可以在网页上 Ctrl+F 调出搜索框,然后直接搜索你要的版本。
在这里插入图片描述

# CUDA 10.1
pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

结果

  再次检查,Tensorflow 对应的输出变为

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] [PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')]

Pytorch 对应的输出变为

True
1

则代表都检测成功了。


  1. RTX 3060 快速配置GPU版本tensorflow ↩︎

  2. Tensorflow与Python、CUDA、cuDNN的版本对应表 ↩︎

  3. 安装tensorflow的Python版本要求 ↩︎

  4. CUDA 版本对应的 Pytorch 版本 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值