Codeforces Round #678 (Div. 2)------Prime Square

题目

Sasha likes investigating different math objects, for example, magic squares. But Sasha understands that magic squares have already been studied by hundreds of people, so he sees no sense of studying them further. Instead, he invented his own type of square — a prime square.

A square of size n×n is called prime if the following three conditions are held simultaneously:

1、all numbers on the square are non-negative integers not exceeding 1e5;
2、there are no prime numbers in the square;
3、sums of integers in each row and each column are prime numbers.

Sasha has an integer n. He asks you to find any prime square of size n×n. Sasha is absolutely sure such squares exist, so just help him!

Input
The first line contains a single integer t (1≤t≤10) — the number of test cases.

Each of the next t lines contains a single integer n (2≤n≤100) — the required size of a square.

Output
For each test case print n lines, each containing n integers — the prime square you built. If there are multiple answers, print any

样例

//输入
2
4
2
//输出
4 6 8 1
4 9 9 9
4 10 10 65
1 4 4 4
1 1
1 1

题意

给定一个整数n,找出一个n*n的矩阵,矩阵满足
所有数不超过1e5,里面没有质数, 每一行和每一列的元素总和是质数

题解

找出一组特殊情况即可。即对角线元素为x - n - 1, 其他元素为1,其中x为大于n的质数,且x - n - 1不是质数。

AC代码

#include<stdio.h>
#include<math.h>
bool judgePrime(int x) {
	for (int i = 2; i <= int(sqrt(x)); i++) {
		if (x % i == 0)
			return false;
	}
	return true;
}
int main()
{
	int t; scanf("%d", &t);
	while (t--) {
		int n; scanf("%d", &n);
		int x = n;
		while (1) {
			if (judgePrime(x) && !judgePrime(x - n + 1))
				break;
			else
				x++;
		}
		for (int i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				if (i == j)
					printf("%d", x - n + 1);
				else
					printf("1");
				if (j != n - 1)
					printf(" ");
			}
			printf("\n");
		}

	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值