题目
Sasha likes investigating different math objects, for example, magic squares. But Sasha understands that magic squares have already been studied by hundreds of people, so he sees no sense of studying them further. Instead, he invented his own type of square — a prime square.
A square of size n×n is called prime if the following three conditions are held simultaneously:
1、all numbers on the square are non-negative integers not exceeding 1e5;
2、there are no prime numbers in the square;
3、sums of integers in each row and each column are prime numbers.
Sasha has an integer n. He asks you to find any prime square of size n×n. Sasha is absolutely sure such squares exist, so just help him!
Input
The first line contains a single integer t (1≤t≤10) — the number of test cases.
Each of the next t lines contains a single integer n (2≤n≤100) — the required size of a square.
Output
For each test case print n lines, each containing n integers — the prime square you built. If there are multiple answers, print any
样例
//输入
2
4
2
//输出
4 6 8 1
4 9 9 9
4 10 10 65
1 4 4 4
1 1
1 1
题意
给定一个整数n,找出一个n*n的矩阵,矩阵满足
所有数不超过1e5,里面没有质数, 每一行和每一列的元素总和是质数
题解
找出一组特殊情况即可。即对角线元素为x - n - 1, 其他元素为1,其中x为大于n的质数,且x - n - 1不是质数。
AC代码
#include<stdio.h>
#include<math.h>
bool judgePrime(int x) {
for (int i = 2; i <= int(sqrt(x)); i++) {
if (x % i == 0)
return false;
}
return true;
}
int main()
{
int t; scanf("%d", &t);
while (t--) {
int n; scanf("%d", &n);
int x = n;
while (1) {
if (judgePrime(x) && !judgePrime(x - n + 1))
break;
else
x++;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j)
printf("%d", x - n + 1);
else
printf("1");
if (j != n - 1)
printf(" ");
}
printf("\n");
}
}
return 0;
}