R语言coding exercises汇总2

本文提供了一组R语言编程练习,涉及创建矩阵、生成随机数、进行多元回归分析等内容。通过创建1000行12列的数据矩阵X_data,随机数向量betas以及噪声和响应变量向量,然后使用这些数据估计回归系数。讨论了估计误差,并探究了增加样本量对误差影响的实验,最后展示了误差的最大值分布的柱状图。
摘要由CSDN通过智能技术生成
  1. Create the matrix X_data. Its dimensions must be 1000 rows and 12 columns. The
    content of each entry must be a randomly chosen number between 1 and 15 with no
    more than 3 decimal points. Columns should be named X_data_1, X_data_2…
    X_data_12. For the random number generation use the command rnunif()
    Create one column vector named betas with the same number of column as X_data.
    Each component must be an integer random number between 1 and 5 both included.
X_data=matrix(data=round(runif(1000*12,min = 1,max = 15),3),ncol = 12,nrow = 1000)
colnames(X_data)=paste("X_data",1:ncol(X_data),sep = "_")
betas=matrix(data=sample(1:5,size=12,replace = TRUE),ncol=1,nrow=12)
row.names(betas)=paste("beta",1:nrow(betas),sep = "_")
  1. Create two column vectors with the same number of rows as X_d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值