专题·置换【including 置换,置换快速幂,洛谷·[HNOI2001]洗牌机

前言:若您手中有一本《组合数学》,那么请翻到P330看书吧,书上讲的是真的好。本文也基本参考该书讲解

本篇博客算是后期两周内会写的一篇关于Polya定理的专题的前置知识

目录

一、置换

1、定义

2、合成运算

3、置换群

二、置换快速幂运算

1、一般情况

2、互质的时候

3、洛谷P2227 [HNOI2001] 洗牌机


一、置换

1、定义

描述可能不那么严谨】我们假设有映射函数\small f(x),对1~n中的每个数都唯一对应1~n中的某个数,并且每个数都被唯一对应,是满射。为了更加清楚地表示这一映射关系,我们用一个2*n的阵型来表示:

\small \begin{pmatrix} ~1,~2,~3,~4...n\\ i_1,i_2,i_3,i_4...i_n \end{pmatrix}

这样的映射关系就是置换。举个例子:对于n=3的时候,有以下6种置换:

\small \binom{1,2,3}{1,2,3},\binom{1,2,3}{1,3,2},\binom{1,2,3}{2,1,3},\binom{1,2,3}{2,3,1},\binom{1,2,3}{3,1,2},\binom{1,2,3}{3,2,1}

2、合成运算

设有置换:

\small f =\binom{1,2,3}{1,3,2},g=\binom{1,2,3}{2,3,1},那么两个置换的合成运算就是:

\small f \circ g = \binom{1,2,3}{1,3,2}\binom{1,2,3}{2,3,1}=\binom{1,2,3}{1,3,2}\binom{1,3,2}{2,1,3}=\binom{1,2,3}{2,1,3}

两两上下对应交换位置即可。这就是置换的合成运算。

并且我们可以发现:

\small g \circ f = \binom{1,2,3}{2,3,1}\binom{1,2,3}{1,3,2}=\binom{1,2,3}{2,3,1}\binom{2,3,1}{3,2,1}=\binom{1,2,3}{3,2,1} \neq f \circ g

这一点要特别注意。

同时,我们也经常用幂次来表示自身置换的次数。比如:置换f^3=f \circ f \circ f

3、置换群【这个跟Polya定理关系比较大

通过前面的讲解,我们已经明白了置换的含义。那么置换群呢?【下文参考《组合数学,其实建议看书会好理解一些】

我们定义\{1,2,...,n\}的所n!个置换构成的集合为S_n。如果S_n中的置换的非空子集G满足一下三条性质,则GX=\{1,2,...,n\}置换群

1)封闭性:对于G中的所有置换f与g,f \circ g也必定在集合中。
2)单位元:S_n中的恒等置换属于G。即G包含恒等置换\binom{1,2,...n}{1,2,...n}
3)逆元的封闭性:对于G中的每一个置换f,f^{-1}也属于G。这一点可以根据置换有循环这一点来判定。

这几个性质的判定其实不会很难,往往一个置换所有阶的置换就是一个置换群。

二、置换快速幂运算【参考潘震皓的讲义

1、一般情况

设有置换\small T=(1,3,5,6,2,4)【这是轮换形式】,那么就有:

\small T^2 = \binom{1,2,3,4,5,6}{3,4,5,6,2,1}\binom{1,2,3,4,5,6}{3,4,5,6,2,1}\\ =\binom{1,2,3,4,5,6}{3,4,5,6,2,1}\binom{3,4,5,6,2,1}{5,6,2,1,4,3}\\ =\binom{1,2,3,4,5,6}{5,6,2,1,4,3}

对于这个结果,我们可以将它写成轮换形式,也就是从1~6对每个数都走一遍上下对应的轮换:

\small \binom{1,2,3,4,5,6}{5,6,2,1,4,3}=(1,5,4)(2,6,3)【2对应5,5对应3,3对应2,这就是一组循环。1,4,6同理.循环内部顺序可以打乱

同理,我们得到T的几个幂次的轮换:【建议手推哦OuO

\small \\T = (1,3,5,2,4,6)\\ T^2=(1,5,4)(2,6,3)\\ T^3=(1,2)(3,4)(5,6)\\ T^4=(1,4,5)(2,3,6)\\ T^5=(1,6,4,2,5,3)\\T^6=(1)(2)(3)(4)(5)(6)

可以发现一件事情:对于\small T^k,轮换形式下,循环的个数就是\small gcd(n,k),并且【每个循环】分别是T中的下标\small i~mod~gcd(n, k)=0,1,2...的元素组成。

我们继续轮换下去,还可以发现:\small T^7=T。所以一定有:\small T^k=T^{(k-1)mod~n+1}【-1和+1是应付下标从0开始这一点,后面置换群还会提到。

2、互质的时候

我们继续看,会发现一些特殊的情况:当\small gcd(n,k)=1的时候,结果一定会是一个大循环对吧?那么如何快速得到这个循环呢?

我们可以再看两个实验【其实从这里开始基本上都是在搬人家讲义的内容了QuQ

\small T=(1,2,5,3,4),则:

\small \\ T^2=(1,5,4,2,3)\\ T^3=(1,3,2,4,5)

其中,\small T^2是把其奇数项取出来,再接上偶数项,\small T^3是取出mod3为1,2,0的项……

所以就可以得到一个定理:令数组\small a=T,a'=T^k,并且有\small gcd(n,k)=1则:

\small a'[i]=a[(k+1)i~mod~n]

看起来有点复杂。但是可以画个环理解理解。【原图来自潘震皓的讲义】

 

 

注意,这样一种行走方式是对于轮换形式的,如果我们要求两个置换,那么一定要先转换成轮换形式,这样早做过后再逆变换回来。逆变换的方式可以自己手推一下。

这个东西有什么用呢?放个很经典的例题:

洛谷P2227 [HNOI2001] 洗牌机

题解

很显然,每一次洗牌就是一次置换的合成操作。一共洗s次牌,就相当于给你\small T^{2^s}的置换状态,让你求\small T的置换状态。

首先题目保证了n是奇数,我们的指数又一定是2的幂次,所以保证了两者互质,我们就可以直接套用上面的那个轮换形式下的递推公式啦。

但是明显我们不能直接跑2^s这么多次。所以我们要降低指数。通过对置换群的了解,我们完全可以将指数对n取余。

代码很短的,直接看吧。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define maxn 1005
using namespace std;
typedef long long ll;
int read() {
	int x = 0, f = 1, ch = getchar();
	while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
	while(isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar();
	return x * f;
}

int n, s, a[maxn], b[maxn];
signed main() {
	n = read(), s = read();
	for(int i = 1; i <= n; i++) a[i] = read();
	for(int i = 1, j = 1; i <= n; i++, j = a[j]) b[i] = a[j];//现在b里面是a的轮换形式
	register int k = 1;
	for(int i = 1; i <= s; i++) k = k * 2 % n;//看到底要多少次幂,即走多少步
	for(int i = 1, j = 1; i <= n; i++, j = (j + k - 1) % n + 1) a[j] = b[i];//这里是在走那个圈圈
	for(int i = 2, j = a[1]; i <= n + 1; i++, j = b[j]) b[j] = a[(i - 1) % n + 1];//反轮换形式
	for(int i = 1; i <= n; i++) printf("%d ", b[i]);
	return 0;
}

呼……群论真的是一个很大的知识点啊。关于单纯置换的题目还有一个:洛谷P4161 [SCOI2009] 游戏

迎评:)
——End——

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据引用\[1\]和引用\[2\]的描述,题目中的影魔拥有n个灵魂,每个灵魂有一个战斗力ki。对于任意一对灵魂对i,j (i<j),如果不存在ks (i<s<j)大于ki或者kj,则会为影魔提供p1的攻击力。另一种情况是,如果存在一个位置k,满足ki<c<kj或者kj<c<ki,则会为影魔提供p2的攻击力。其他情况下的灵魂对不会为影魔提供攻击力。 根据引用\[3\]的描述,我们可以从左到右进行枚举。对于情况1,当扫到r\[i\]时,更新l\[i\]的贡献。对于情况2.1,当扫到l\[i\]时,更新区间\[i+1,r\[i\]-1\]的贡献。对于情况2.2,当扫到r\[i\]时,更新区间\[l\[i\]+1,i-1\]的贡献。 因此,对于给定的区间\[l,r\],我们可以根据上述方法计算出区间内所有下标二元组i,j (l<=i<j<=r)的贡献之和。 #### 引用[.reference_title] - *1* *3* [P3722 [AH2017/HNOI2017]影魔(树状数组)](https://blog.csdn.net/li_wen_zhuo/article/details/115446022)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [洛谷3722 AH2017/HNOI2017 影魔 线段树 单调栈](https://blog.csdn.net/forever_shi/article/details/119649910)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值