UOJ#310. 【UNR #2】黎明前的巧克力

初见安~这里是传送门:uoj#310. 【UNR #2】黎明前的巧克力

题解

这题挺降智的……考虑如果能选出来一个集合使之异或和为0,那么这个集合划分成任意两个集合一定都满足条件

容易想到形如背包,就可以想到dp了:设dp[i][j]表示前i个数,选了一部分使当前两个集合内所有数的异或和为j时的方案数。可以得到:

dp_{i,j}=dp_{i-1, j}+2*dp_{i-1,j \ xor \ a_i}

复杂度直接n^2,显然不行。

看到异或过后可以想到(?反正我没)尝试用FWT优化一下。强行把这两项的和变成求和式:

dp_{i,j}=dp_{i-1, j}+2*dp_{i-1,j \ xor \ a_i}\\ =\sum_{k=0}^Ndp_{i-1,j \ xor\ k}*b_{i, k}

并且b_{i,0}=1,b_{i,a_i}=2,其余为0。

换言之,最后的dp数组相当于这n个bi数组异或卷积起来。答案我们取dp[0]。注意要去掉一个数都没选的情况,所以答案是dp[0]-1。

根据FWT的性质,每个位置FWT过后一定会计算上0位置的贡献为1,对于ai位置的2则是贡献可能为2或者-2。

因为FWT会不重不漏遍历所有需要的子集,遍历后会取一次相反数再加上一个值。也就是可以写成:

FWT(x_i)=\sum_{j}^Nx_j(-1)^{popcount(i\ xor\ j)}

所以对于一个bi数组,一次FWT后每个位置都是3或者-1。

再看我们要求的东西,相当于对于每个bi都FWT一次,再对应位置全部乘起来,然后逆变换回去,取0位置的答案。复杂度直接N^2。

竖着考虑每一位,乘起来的时候相当于若干个3和-1乘起来。如果我们能知道有多少个3和-1,那就可以直接快速幂而非On去乘。

设cnt3表示3的个数,cnt1表示1的个数,那么一定有:

cnt3+cnt1=n

若当前在第k位,设sumk:(sumk可以当成是为了求出cnt3而强行扯上的一个变量。

sum_k=\sum_{i=1}^nFWT(b_{i,k})

则:

cnt3*3+cnt1*(-1)=sum_k

\therefore cnt3=\frac{sum_k+n}{4},cnt1=n-cnt3

最后的问题就是求sumk了。

因为sumk是FWT的和,所以可以等价成和的FWT

和的FWT?那不就是…

sum_k=\sum_{j}^Nb_j(-1)^{popcount(j\ xor\ k)}

换言之这n个b数组可以直接全部叠到一起,变成一个b的桶。

所以只要FWT一次,然后算cnt3的个数,再逆变换回去就行了。

上代码——

#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int mod = 998244353, inv2 = 499122177, N = (1 << 20);
int read() {
	int x = 0, f = 1, ch = getchar();
	while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
	while(isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar();
	return x * f;
}

int n, a[1 << 21], pw[1 << 21];
void fwt(int *a, int op) {
	for(int j = 1; j < N; j <<= 1) for(int i = 1; i < N; i++) if(i & j) {
		ll x = a[i ^ j], y = a[i];
		a[i ^ j] = (x + y) % mod, a[i] = (x - y + mod) % mod;
		if(op == -1) a[i ^ j] = 1ll * a[i ^ j] * inv2 % mod, a[i] = 1ll * a[i] * inv2 % mod;
	}
}

signed main() {
	n = read();
	register int inv4 = 1ll * inv2 * inv2 % mod;
	pw[0] = 1; 
	for(int i = 1; i < N; i++) pw[i] = 1ll * pw[i - 1] * 3 % mod;
	for(int i = 1, x; i <= n; i++) x = read(), a[0]++, a[x] += 2;//全部叠一起
	
	fwt(a, 1);
	for(int i = 0; i < N; i++) {
		register int cnt3 = 1ll * (a[i] + n) * inv4 % mod, cnt1 = n - cnt3;
		a[i] = pw[cnt3];
		if(cnt1 & 1) a[i] = mod - a[i];
	}
	fwt(a, -1);
	printf("%d\n", (a[0] - 1 + mod) % mod);
	return 0;
}

挺板子的一个题,但是看了一天……

迎评:)
——End——

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值