洛谷·bzoj·OSU!

初见安~这里是传送门:洛谷P1654 & bzoj P4318 OSU!

Description

osu 是一款群众喜闻乐见的休闲软件。 

我们可以把osu的规则简化与改编成以下的样子: 

一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 

现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 

Sample Input

3
0.5
0.5
0.5

Sample Output

6.0

HINT

【样例说明】 

000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 

N<=100000

Sol

首先——题目说的很对,OSU是个很有趣的游戏【划掉】

很明显是个期望dp。嗯。具体状态这么设置呢?dp[i] 为到第i位时的期望得分,则dp[n] 即为所求这是很好想到的。

怎么转移呢——

1、如果第i位为0, 那么期望得分就是dp[i - 1] * (1-p[i]) 【p[i] 为第i位为1的概率】,这里应该没什么问题。

2、如果第i位为1呢? 就有点复杂了。像我一开始的想法的话就是:考虑前一位,如果是1,就枚举连续1的个数乘上其概率;如果是0,那就直接加上前面第二位的dp值乘上前一位为0和这一位为1的概率……后期发现枚举部分因为乘积需要差分,有可能出现除数为零的情况……【当然本来就是n^2的暴力,当时准备骗点分的】

现在来说正解——似乎我们需要考虑有连续的1这种问题,再加上不与当前位连续的 连续的1的情况,本题就复杂至极了。那么既然1的个数上情况这么多,我们能不能处理出和最后一位接上的连续1的【个数】的期望呢?很好处理呢——我们设g[i] 表示到第i位,与i连续的1的个数的期望。假设我们已经算出来了g[i-1],那么g[i] 我们就可以看做是在g[i-1] 的期望的基础上,保证新加上的一位是1,然而这种情况啊又自带概率值,所以就是:g[i]=(g[i-1]+1)*p[i] 。

这样一来我们需要的就是个数的三次方的期望了。【下面这一步很多题解也都有解释……】

假设到当前i位,设x=g[i-1] ,我们需要的就是:

(x+1)^3=(x+1)*(x^2+2x+1)=x^3+2x^2+x+x^2+2x+1=x^3+3x^2+3x+1,相当于在x^3的基础上增加了3x^2+3x+1。那么我们求答案的时候直接累加就可以了。

明显的,我们还需要一个量——长度的平方的期望

h[i]表示长度的平方的期望。那么可以像上文三方的转化那样得到:h[i]=(h[i-1]+2g[i-1]+1)*p[i]形如完全平方公式展开。最后乘上p[i] 

但是这里的h[i] \neq (g[i]^2)。因为很明显,如果直接平方的话我们求的就不是长度的平方的期望,而是长度的期望的平方。二者是完全不同的哈。

那么为什么不是h[i]=g[i^2]?【我就因为这个卡了半个多小时……】因为所谓期望,是权值乘其概率。我们知道x的期望,是x乘上其概率;那么x^2的期望,就应该是x^2的值乘上其概率。很明显,两者的概率是一样的,因为变化的只有权值。所以我们只能从前一位推过来。换做x^3也是同理。

那么我们这里就处理完了!!!!!!!接下来就可以整合答案了:

当然,要加上前一位的期望。设dp[i]表示到第i位的分数的期望,那么我们的答案就是dp[n]

dp[i] = (dp[i-1]+3h[i-1]+3g[i-1]+1)*p[i]+dp[i-1]*(1-p[i]) 。

但我们一开始的想法并没有什么大问题对吧?所以据这位大佬所言的,可以这么理解:

————————————————————————————————————————————————————————

————————————————————————————————————————————————————————

以上就是全部啦!!这个题代码出奇的短,但思维复杂度挺高的呢……【看我题解篇幅就知道了……】

上代码——

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<map>
#define maxn 100005
using namespace std;
int read() {
    int x = 0, f = 1, ch = getchar();
    while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
    while(isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar();
    return x * f;
}
 
int n;
double dp[maxn], p, g[maxn], h[maxn];
signed main() {
    n = read();
    for(int i = 1; i <= n; i++) {
        scanf("%lf", &p);//核心代码就下面三行。 
        g[i] = p * (g[i - 1] + 1);
        h[i] =p * (h[i - 1] + 2 * g[i - 1] + 1);
        dp[i] = p * (dp[i - 1] + 3 * h[i - 1] + 3 * g[i - 1] + 1) + (1 - p) * dp[i - 1];
    }

    printf("%.1lf\n", dp[n]);
    return 0;
}

迎评:)
——End——

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值