- 博客(219)
- 资源 (15)
- 收藏
- 关注
原创 目录catalog
数值分析高斯消元法(python)解线性方程组雅可比迭代法(python)解线性方程组高斯-赛德尔迭代法(python)解线性方程组逐次超松弛迭代法SOR(python)解线性方程组
2021-01-16 21:21:22 331 1
原创 python离线安装第三方库、及其依赖库(单个安装,非批量移植)
问题是python第三方库往往有其前置依赖包,你很难清楚某个第三方库依赖的是哪些依赖包,更难受的是依赖包可能还有其前置依赖包。结果就是,matplotlib文件夹里面有这么多依赖包,全都是matplotlib==3.5.1第三方库需要的前置包。内网中离线安装python第三方库,这时候只能去外网手动下载第三方库,再传回内网进行安装。如果按上述解决办法中安装仍会报错,那么可以查看错误信息是具体哪个依赖包安装出错,然后去。首先,看清内网电脑上的python版本,版本不一致,下载得到的依赖包版本也不一样。
2024-06-20 22:54:46 1170
原创 13-注意力机制
对于超分辨问题,所有空间位置和通道都有着相同的重要性(即权值相同)。在一些情况下,在给定的层中选择性地处理部分特征可能更有帮助。注意力机制则可以赋予其这样的灵活性。注意力机制的核心重点就是让网络关注到它更需要关注的地方。一般而言,注意力机制可以分为通道注意力机制,空间注意力机制,以及二者的结合。注意力机制可以挑出更重要 特征图通道、空间位置,给予其更大的权重,从而提升重建效果。注意力机制是深度学习常用的一个小技巧,它有多种多样的实现形式,尽管实现方式多样,但是每种注意力机制的核心是类似的。
2024-01-04 16:24:49 1090
原创 PyTorch离线安装
于是,就有了 Anaconda,这是一个集成了常用于科学分析(机器学习,深度学习)的大量package。比如这个项目要用到 pytorch 0.4,另一个项目要用到 pytorch 1.0,如果你卸载了0.4版本,安装了1.0版本。那么下一次,你再碰到0.4版本,你就需要卸载1.0版本,安装0.4版本。有的时候,下载速度太慢了,可以利用我已经下载好的文件(适用于较高版本显卡,自己的电脑不适用),如果是 True,意味着你可以使用 GPU,如果是 False,意味着只能使用CPU。如果你的并不慢,恭喜恭喜。
2023-11-22 21:24:18 1593
原创 13-1-SRGAN-图像超分-残差模块-亚像素卷积
'''Residual Block残差模块'''nn.PReLU(), # 自动学习斜率的LeakyReLUx = x + self.conv(x) # 残差精华:ElementWise Sum 头尾相加return xreturn out参考:亚像素卷积用法把维度(B, Crr, H,w) reshape成 (B, C, Hr,wr)维度大小不变:B· C* r * r· H·w = B·C·H * r·w*r。
2023-11-16 17:36:37 257
原创 *常用函数
PReLU(Parametric Rectified Linear Unit), 顾名思义:带参数的ReLU。如果ai是一个很小的固定值(如ai=0.01),则PReLU退化为Leaky ReLU(LReLU)。有实验证明,与ReLU相比,LReLU对最终的结果几乎没什么影响。如果ai=0,那么PReLU退化为ReLU;
2023-10-14 02:35:44 342
原创 11-1-转置卷积ConvTransposed2d
stride是图片像素点之间的间距,stride=1为像素的的正常间距,stride=2表示像素点间距为2,即添加了一排0填充。,消去0填充边缘,padding=1代表消去full卷积中的1条0填充边缘(不同于卷积中的添加0填充边)padding是图像四周的0填充,padding=1表示四周填充一排像素点。(stride=1, padding=0 就是一般性的full卷积)stride是卷积核的 滑动步长。能实现实现上采样,用于。
2023-10-13 16:33:43 269
原创 10-SRCNN-使用CNN实现超分辨成像
工具文件,主要用来制作dataset,便于加入dataloader,用于实现数据集的加载和并行读取。默认GPU训练,使用CPU训练需要去掉所有的三个.to(device)使用了自动学习率,每个epoch下的lr为。加载训练好的模型,用于测试或使用。训练参数:MESloss、Adm。模型训练完,导入进来就可以用啦!主要写入网络(模型)
2023-10-13 11:33:22 725
原创 *常用-格式转化-图像操作
在深度学习算法中,会涉及到如下与图像处理相关的操作和转换。基本的库函数为:opencv,pillow,torchvision(tensor),numpy。第二,使用torchvision函数转换从tensor转换为PIL图像,使用PIL进行图像存储。第一,图像读取使用PIL,直接使用torchvision函数将PIL图像转换为tensor。tensor转opencv首先将。数组,再将numpy转为。
2023-10-11 17:11:45 134
原创 不确定度保留有效数字的规则
1、不确定度:当第一位有效数字是1或2时,应保留2位有效数字。当第一位有效数字大于2时,保留1位有效数字即可,如果要求较高也可以保留2位有效数字。而中间过程的不确定度可以多取一位有效数字,要按照只进不舍的原则。2、测量平均值的有效数字:要按照四舍六入五凑偶的规则,与不确定末位保持对齐即可。
2023-07-27 23:52:51 10762
原创 双系统-真机安装ubuntu
双系统说明硬盘均使用gpt、UEFI引导装在同一个硬盘:共用一个引导,开机bios选择要进入的系统。先安装win,会自动有efi引导,后面linux就不用单独做引导了装在两个硬盘:双硬盘,双引导,开机bios中选择要进入的系统。硬盘1安装win,自动产生引导。硬盘2安装linux,仍需要做一个引导。
2023-05-09 01:50:42 892 1
原创 excel粘贴为python数组
Ctrl+a 全选 --> Ctrl+Shift+L 多行编辑 --> End 跳到每行的末尾 --> 逗号。粘贴到word,(^p)全部替换(, )
2023-04-24 21:10:35 160
原创 7-CNN-minist数据分类
使用卷积网络、全连接网络,对MINIST数据进行分类卷积网络:通常,卷积神经网络都是一个4D的形状输出,(batch,out_channel,行列值,行列值),如代码中的(64,32,7,7)输入到全连接网络:输入值应当为图片信息,输入形状需要根据图像大小展平reshape(-1, 32×7×7),即为(batch=64,32×7×7)输出形状根据nn.Linear(256,
2022-12-07 17:28:04 574
原创 keras-gpu安装
先升级显卡驱动:https://zhuanlan.zhihu.com/p/147552901,确保后面不会因为显卡驱动版本低这个问题被卡住。搭建tensorflow环境(keras最高支持到python3.6,若以后更高了再改成3.9、3.10之类的吧~)进入到新环境中mamba也是一个包管理器,设置环境时比较快,避免停在solving environment不动安装tensorflow-gpu可以一次性安装CUDA、cuDNN、tensorflow-gpu、tensorflow没自信的话,可以查看
2022-12-05 22:45:12 1254
原创 linux常用命令
sudo+命令,输入当前用户密码后以root权限执行命令sudo su,用户身份切换到root身份,root身份切换到用户身份pwd 显示工作路径systemctl stop firewalld 关闭防火墙。
2022-11-28 22:29:52 359
原创 挂载-共享文件夹
把执行的命令放到/etc/rc.local 文件下;/etc/rc.local 是一个空文件则在里面添加内容,按钮回到一般模式,在一般模式中。储存后,按enter离开 vi。如果本身存在共享文件夹会提示。2.若没有共享文件夹,执行。开始编辑,粘贴上命令语句。重启虚拟机 reboot。1.创建共享文件夹目录。
2022-11-28 12:24:53 414
原创 VMWare Tools与open-vm-tools
→ 以使得剪贴板共享有效(但是文件夹共享无效)2.安装open-vm的所有工具,输入。3 如果要实现文件夹共享,需要安装。4 桌面环境,支持双向拖放文件。→ 以使得文件夹共享有效。3.重启 reboot。
2022-11-28 11:07:35 2247
原创 6-2-多层感知器(多输出多分类)- 参考模板
'''多层感知器(多分类)神经网络本质:对输入的值做了复杂的加权和非线性处理后输出的一个值,并通过Softmax层将这个输出值变为概率分布。'''import torchvisionfrom torchvision.transforms import ToTensorfrom torch.utils.data import DataLoaderimport matplotlib.pyplot as pltimport numpy as npimport torchfrom torc..
2022-05-03 17:07:52 570
原创 6-1-torchvision、DataLoader的使用-MINIST
'''torchvision'''import torchvisionfrom torchvision.transforms import ToTensor# ToTensor()的作用:# 1.将输入转为tensor# 2.图片格式转换为(通道,高,宽) #其他软件中常见的图片格式:(行,列,通道),一般是3通道,如(512,512,3)。但是在pytorch中经常为(通道,高,宽)# 3.将像素值转换到(0,1)范围'''dataset.MNIST内置数据--Dataset类型'''#
2022-05-03 16:06:22 260
原创 5-2-Dataset、Dataloder、train_test_split的使用
import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt'''预处理表格数据(忽略)'''# 反正X、Y拿来用就行了,X是输入数据,Y是输出数据(学习目标)data = pd.read_csv('HR.csv')data.part.unique()data.salary.unique()data = data.join(pd.get_dummies(data.part)).join(
2022-05-03 16:00:23 745
原创 5-1-多层感知器(单输出二分类)-完整结构
"""创建多层感知器:多输入-单输出(二分类)神经本质:对输入的值做了复杂的加权和非线性处理后输出的一个值"""import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt'''预处理表格数据(忽略)'''# 反正X、Y拿来用就行了,X是输入数据,Y是输出数据(学习目标)data = pd.read_csv('HR.csv')data.part.unique()data.sala.
2022-05-03 15:44:51 533
原创 4-逻辑回归与交叉熵(二分类)-单层&激活层
但是,单个神经元(单层)无法解决异或问题,如"""逻辑回归、交叉熵、二分类、单层神经元功能:判断是否会被信用卡欺诈。数据中前15列是个人数据,最后1列是是否被欺诈的结果"""import torchimport pandas as pdimport numpy as npimport matplotlib.pyplot as plt# 读取数据data = pd.read_csv('credit-a.csv', header=None) # 前15列是输入特征值,最后1列是目.
2022-05-03 15:05:48 203
projection_360.npy
2021-09-27
Circular CBCT_flat_panel_detector.mat # FDk三维图像重建投影数据
2021-01-19
shepp_logan头模解析解proj_Shepplogan_360_300
2020-10-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人