文章目录
python安装
1. Anaconda 下载
在机器学习,深度学习中,要用到大量的 package(就是各种工具包)。如果说,函数是一个工具,那么 package 就是一个工具包。一个个安装 package 很麻烦,而且容易出现疏漏。于是,就有了 Anaconda,这是一个集成了常用于科学分析(机器学习,深度学习)的大量package。
也就是说,你只要安装了 Anaconda,就安装了很多我们之后要用的许多packages。(他还有很多功能,对入门帮助超大,后面再说)
Anaconda历史版本链接
2. Anaconda 安装
双击进行安装,需要注意以下几点:
(1)记住安装路径,之后会用到
(2)跳过安装 Microsoft VSCode
为了检验是否安装成功,在开始菜单中打开 Anaconda Prompt
如果可以成功打开,且左边有 (base),即安装成功
pytorch安装
3. 显卡配置(无 Nvidia 显卡的略过)
- 查看有无驱动(可忽略,直接进行第2步)
只要你打开任务管理器,在 GPU 那里看到了你的 NVIDIA 显卡,即可。说明你的硬件驱动,已安装。
如果你的 NVIDIA 显卡未显示,可以使用驱动人生,或者去官网下载驱动。
2.
打开cmd,输入nvidia-smi
查看驱动版本
Driver Version显示,该卡目前的驱动版本为471.68
若报错:nvidia-smi不是内部或外部命令也不是可运行的程序 把C:\Program Files\NVIDIA
Corporation\NVSMI添加到个人环境变量path
4. 新建虚拟环境,用于存放pytorch
也许,你之后会遇到不同的项目,需要使用到不同版本的环境。比如这个项目要用到 pytorch 0.4,另一个项目要用到 pytorch 1.0,如果你卸载了0.4版本,安装了1.0版本。那么下一次,你再碰到0.4版本,你就需要卸载1.0版本,安装0.4版本。很折腾。
Anaconda 集成的 conda 包就能够解决这个问题。它可以创造出两个屋子,相互隔离。一个屋子放 0.4 版本,一个屋子放 1.0 版本。你需要哪个版本,就进哪个屋子工作。
离线情况创建虚拟环境,叫做 pytorch:
conda create -n example --offline
可选:conda create -n pytorch python=3.6 --offline 指定python版本
方案二:复制base 环境
conda create -n example --clone base
输入 y,即可安装。等待安装成功。
查看环境:
conda info --envs
右边的 * 号表示,当前你处于哪个环境。
进入 pytorch 环境:
conda activate pytorch
你可以看到左边的 base 变成了 pytorch,代表成功进入 pytorch 环境。
在pytorch环境中,安装matplotlib等库
后续会发现pytorch环境缺少matplotlib等包,安装时需要
1.先进入pytorch环境,conda activate pytorch
2.命令安装,如pip install matplotlib
5. 安装 CUDA
根据nvidia-smi
查看的cuda分值和驱动分值,查阅下面链接表格,先确定我们要安装的cudatoolkit版本,进一步确定pytorch(torch,torchvision,torchaudio)的版本
选择安装版本
cudatoolkit和pytorch版本-必读:
NVIDIA CUDA Toolkit Release Notes,查看表2表3,根据Driver Version的分值确定cudatoolkit的版本。
下载安装cudatoolkit
cuda-toolkit历史版本下载:https://developer.nvidia.com/cuda-toolkit-archive(下载cuda11.3版本)
下载后,双击exe文件安装。
检查与配置环境变量
检测系统变量中PATH是否存在:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3
检查CUDA是否成功
进入Anaconda Prompt在base环境中进入CUDA安装路径:
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\extras\demo_suite
分别输入deviceQuery.exe
和bandwidthTest.exe
,若都显示Result=PASS则说明安装成功
查看CUDA版本
进入Anaconda Prompt在base环境中输入以下指令: nvcc --version
原文链接:https://blog.csdn.net/supercxt_/article/details/133180138
6 安装pytorch(torch,torchvision,torchaudio)
①确定版本组合
由cuda的版本,确定torch,torchvision,torchaudio的版本,组合参考官网安装代码
ctrl+F搜索cuda版本号,就可以得到适用的版本组合:
例如(CUDA 11.3对应的torch=1.12.1 , torchvision=0.13.1, torchaudio=0.12.1)
例如(CUDA 11.3对应的torch=1.11.0 , torchvision=0.12.0, torchaudio=0.11.0)
②下载3个资源包:torch,torchvision,torchaudio
网址: https://download.pytorch.org/whl/torch_stable.html
cpu开头的是CPU版本,cu开头的是GPU版本。“cp” 后面的数字代表 python 版本。“win_amd64”表示适配的操作系统。
下载完成,CUDA 11.3和python3.9对应的版本
③安装离线包
使用 conda activate pytorch
, 进入 pytorch 环境中。
说明(可忽略):安装时cudatoolkit和pytorch是自动一起安装的,我们可以【仅指定cudatoolkit版本(推荐)】【仅指定pytorch版本】【指定两者版本】,下面将使用仅指定cudatoolkit版本的方法安装:
pip3 install torch-1.12.0+cu113-cp39-cp39-win_amd64.whl
pip3 install torchvision-0.13.0+cu113-cp39-cp39-win_amd64.whl
pip3 install torchaudio-0.12.0+cu113-cp39-cp39-win_amd64.whl
7. 验证是否安装成功
(1)conda activate pytorch
, 进入 pytorch 环境中,输入 python
(2)输入 import torch
,如果没有报错,意味着 PyTorch 已经顺利安装了
(3)接下来,输入 torch.cuda.is_available()
,如果是 True,意味着你可以使用 GPU,如果是 False,意味着只能使用CPU。
(4)查看pytorch版本torch.__version__